On Two Outer Independent Roman Domination Related Parameters in Torus Graphs

In a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)<...

Full description

Bibliographic Details
Main Authors: Hong Gao, Xing Liu, Yuanyuan Guo, Yuansheng Yang
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/18/3361
_version_ 1797485190383140864
author Hong Gao
Xing Liu
Yuanyuan Guo
Yuansheng Yang
author_facet Hong Gao
Xing Liu
Yuanyuan Guo
Yuansheng Yang
author_sort Hong Gao
collection DOAJ
description In a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where every vertex is assigned 0, 1 or 2, <i>f</i> is an assignment such that every vertex assigned 0 has at least one neighbor assigned 2 and all vertices labeled by 0 are independent, then <i>f</i> is called an outer independent Roman dominating function (OIRDF). The domination is strengthened if every vertex is assigned 0, 1, 2 or 3, <i>f</i> is such an assignment that each vertex assigned 0 has at least two neighbors assigned 2 or one neighbor assigned 3, each vertex assigned 1 has at least one neighbor assigned 2 or 3, and all vertices labeled by 0 are independent, then <i>f</i> is called an outer independent double Roman dominating function (OIDRDF). The weight of an (OIDRDF) OIRDF <i>f</i> is the sum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula>. The outer independent (double) Roman domination number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the minimum weight taken over all (OIDRDFs) OIRDFs of <i>G</i>. In this article, we investigate these two parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of regular graphs and present lower bounds on them. We improve the lower bound on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for a regular graph presented by Ahangar et al. (2017). Furthermore, we present upper bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for torus graphs. Furthermore, we determine the exact values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mn>3</mn></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mi>m</mi></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mo>(</mo><mi>mod</mi><mspace width="0.277778em"></mspace><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mo>(</mo><mi>mod</mi><mspace width="0.277778em"></mspace><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and the exact value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mn>3</mn></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. By our result, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mi>m</mi></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>≤</mo><mn>5</mn><mi>m</mi><mi>n</mi><mo>/</mo><mn>4</mn></mrow></semantics></math></inline-formula> which verifies the open question is correct for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>m</mi></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> that was presented by Ahangar et al. (2020).
first_indexed 2024-03-09T23:15:14Z
format Article
id doaj.art-fb222e2809764ec58a00d94e2d96f513
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:15:14Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-fb222e2809764ec58a00d94e2d96f5132023-11-23T17:37:28ZengMDPI AGMathematics2227-73902022-09-011018336110.3390/math10183361On Two Outer Independent Roman Domination Related Parameters in Torus GraphsHong Gao0Xing Liu1Yuanyuan Guo2Yuansheng Yang3College of Science, Dalian Maritime University, Dalian 116026, ChinaCollege of Science, Dalian Maritime University, Dalian 116026, ChinaCollege of Science, Dalian Maritime University, Dalian 116026, ChinaSchool of Computer Science and Technology, Dalian University of Technology, Dalian 116024, ChinaIn a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where every vertex is assigned 0, 1 or 2, <i>f</i> is an assignment such that every vertex assigned 0 has at least one neighbor assigned 2 and all vertices labeled by 0 are independent, then <i>f</i> is called an outer independent Roman dominating function (OIRDF). The domination is strengthened if every vertex is assigned 0, 1, 2 or 3, <i>f</i> is such an assignment that each vertex assigned 0 has at least two neighbors assigned 2 or one neighbor assigned 3, each vertex assigned 1 has at least one neighbor assigned 2 or 3, and all vertices labeled by 0 are independent, then <i>f</i> is called an outer independent double Roman dominating function (OIDRDF). The weight of an (OIDRDF) OIRDF <i>f</i> is the sum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula>. The outer independent (double) Roman domination number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the minimum weight taken over all (OIDRDFs) OIRDFs of <i>G</i>. In this article, we investigate these two parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of regular graphs and present lower bounds on them. We improve the lower bound on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for a regular graph presented by Ahangar et al. (2017). Furthermore, we present upper bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for torus graphs. Furthermore, we determine the exact values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mn>3</mn></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mi>m</mi></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mo>(</mo><mi>mod</mi><mspace width="0.277778em"></mspace><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mo>(</mo><mi>mod</mi><mspace width="0.277778em"></mspace><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and the exact value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mn>3</mn></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. By our result, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><msub><mi>C</mi><mi>m</mi></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>≤</mo><mn>5</mn><mi>m</mi><mi>n</mi><mo>/</mo><mn>4</mn></mrow></semantics></math></inline-formula> which verifies the open question is correct for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>m</mi></msub><mo>□</mo><msub><mi>C</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> that was presented by Ahangar et al. (2020).https://www.mdpi.com/2227-7390/10/18/3361regular graphsouter independent double Roman dominationCartesian product of cyclesouter independent Roman domination
spellingShingle Hong Gao
Xing Liu
Yuanyuan Guo
Yuansheng Yang
On Two Outer Independent Roman Domination Related Parameters in Torus Graphs
Mathematics
regular graphs
outer independent double Roman domination
Cartesian product of cycles
outer independent Roman domination
title On Two Outer Independent Roman Domination Related Parameters in Torus Graphs
title_full On Two Outer Independent Roman Domination Related Parameters in Torus Graphs
title_fullStr On Two Outer Independent Roman Domination Related Parameters in Torus Graphs
title_full_unstemmed On Two Outer Independent Roman Domination Related Parameters in Torus Graphs
title_short On Two Outer Independent Roman Domination Related Parameters in Torus Graphs
title_sort on two outer independent roman domination related parameters in torus graphs
topic regular graphs
outer independent double Roman domination
Cartesian product of cycles
outer independent Roman domination
url https://www.mdpi.com/2227-7390/10/18/3361
work_keys_str_mv AT honggao ontwoouterindependentromandominationrelatedparametersintorusgraphs
AT xingliu ontwoouterindependentromandominationrelatedparametersintorusgraphs
AT yuanyuanguo ontwoouterindependentromandominationrelatedparametersintorusgraphs
AT yuanshengyang ontwoouterindependentromandominationrelatedparametersintorusgraphs