An approach to localization for ensemble-based data assimilation.

Localization techniques are commonly used in ensemble-based data assimilation (e.g., the Ensemble Kalman Filter (EnKF) method) because of insufficient ensemble samples. They can effectively ameliorate the spurious long-range correlations between the background and observations. However, localization...

Full description

Bibliographic Details
Main Authors: Bin Wang, Juanjuan Liu, Li Liu, Shiming Xu, Wenyu Huang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5774775?pdf=render
Description
Summary:Localization techniques are commonly used in ensemble-based data assimilation (e.g., the Ensemble Kalman Filter (EnKF) method) because of insufficient ensemble samples. They can effectively ameliorate the spurious long-range correlations between the background and observations. However, localization is very expensive when the problem to be solved is of high dimension (say 106 or higher) for assimilating observations simultaneously. To reduce the cost of localization for high-dimension problems, an approach is proposed in this paper, which approximately expands the correlation function of the localization matrix using a limited number of principal eigenvectors so that the Schür product between the localization matrix and a high-dimension covariance matrix is reduced to the sum of a series of Schür products between two simple vectors. These eigenvectors are actually the sine functions with different periods and phases. Numerical experiments show that when the number of principal eigenvectors used reaches 20, the approximate expansion of the correlation function is very close to the exact one in the one-dimensional (1D) and two-dimensional (2D) cases. The new approach is then applied to localization in the EnKF method, and its performance is evaluated in assimilation-cycle experiments with the Lorenz-96 model and single assimilation experiments using a barotropic shallow water model. The results suggest that the approach is feasible in providing comparable assimilation analysis with far less cost.
ISSN:1932-6203