Supramolecular Gels Incorporating <i>Cordyline terminalis</i> Leaf Extract as a Polyphenol Release Scaffold for Biomedical Applications

<i>Cordyline terminalis</i> leaf extract (aqCT) possesses abundant polyphenols and other bioactive compounds, which are encapsulated in gelatin–polyethylene glycol–tyramine (GPT)/alpha-cyclodextrin (α-CD) gels to form the additional functional materials for biomedical applications. In th...

Full description

Bibliographic Details
Main Authors: Dieu Phuong Nguyen Thi, Dieu Linh Tran, Phuong Le Thi, Ki Dong Park, Thai Thanh Hoang Thi
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/16/8759
Description
Summary:<i>Cordyline terminalis</i> leaf extract (aqCT) possesses abundant polyphenols and other bioactive compounds, which are encapsulated in gelatin–polyethylene glycol–tyramine (GPT)/alpha-cyclodextrin (α-CD) gels to form the additional functional materials for biomedical applications. In this study, the gel compositions are optimized, and the GPT/α-CD ratios equal to or less than one half for solidification are found. The gelation time varies from 40.7 min to 5.0 h depending on the increase in GPT/α-CD ratios and aqCT amount. The aqCT extract disturbs the hydrogen bonding and host–guest inclusion of GPT/α-CD gel networks, postponing the gelation. Scanning electron microscope observation shows that all gels with or without aqCT possess a microarchitecture and porosity. GPT/α-CD/aqCT gels could release polyphenols from 110 to 350 nmol/mL at the first hour and sustainably from 5.5 to 20.2 nmol/mL for the following hours, which is controlled by feeding the aqCT amount and gel properties. GPT/α-CD/aqCT gels achieved significant antioxidant activity through a 100% scavenging DPPH radical. In addition, all gels are non-cytotoxic with a cell viability more than 85%. Especially, the GPT3.75α-CD10.5aqCT gels with aqCT amount of 3.1–12.5 mg/mL immensely enhanced the cell proliferation of GPT3.75α-CD10.5 gel without extract. These results suggest that the inherent bioactivities of aqCT endowed the resulting GPT/α-CD/aqCT gels with effective antioxidant and high biocompatibility, and natural polyphenols sustainably release a unique platform for a drug delivery system or other biomedical applications.
ISSN:1661-6596
1422-0067