Controlled microstructure and mechanical properties of Al2O3-based nanocarbon composites fabricated by electrostatic assembly method

Abstract This work reports on the microstructure-controlled formation of interconnected carbon-layered Al2O3 ceramics using carbon nanoparticles (CNP)-alumina (Al2O3) composite particles. The Al2O3 micro-particles used in this study were obtained by granulation of nano-sized Al2O3 nanoparticles with...

Full description

Bibliographic Details
Main Authors: Wai Kian Tan, Norio Hakiri, Atsushi Yokoi, Go Kawamura, Atsunori Matsuda, Hiroyuki Muto
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-019-3061-4
Description
Summary:Abstract This work reports on the microstructure-controlled formation of interconnected carbon-layered Al2O3 ceramics using carbon nanoparticles (CNP)-alumina (Al2O3) composite particles. The Al2O3 micro-particles used in this study were obtained by granulation of nano-sized Al2O3 nanoparticles with an average diameter of 150 nm. Then, CNP-Al2O3 composite was fabricated using an electrostatic assembly method using the granulated Al2O3 and CNP. The decoration of CNP on the surface of granulated Al2O3 was investigated as a function of primary particle size and coverage percentage using a fixed amount of CNP. Notably, an interconnected layer of carbon particles at the interface of Al2O3 that resemble the grain boundaries was obtained. The mechanical properties of the samples obtained with different particle size and CNP coverage on Al2O3 particles were also investigated which presented the possibility to control the mechanical properties through microstructural design of composite ceramic materials.
ISSN:1931-7573
1556-276X