Free Vibration of Flax Braided Fabric PLA Beam under Edge Compression

The present study focuses on the development of biodegradable composites to replace synthetic polymer-based composites for potential lightweight structural applications in the automobile, aeronautical, marine, and packaging industries. Initially, PLA and NFBF/PLA films are prepared by solution casti...

Full description

Bibliographic Details
Main Authors: Sateeshkumar Kanakannavar, Jeyaraj Pitchaimani
Format: Article
Language:English
Published: Taylor & Francis Group 2022-11-01
Series:Journal of Natural Fibers
Subjects:
Online Access:http://dx.doi.org/10.1080/15440478.2021.2009405
Description
Summary:The present study focuses on the development of biodegradable composites to replace synthetic polymer-based composites for potential lightweight structural applications in the automobile, aeronautical, marine, and packaging industries. Initially, PLA and NFBF/PLA films are prepared by solution casting, and from these films, composite laminates are prepared by film sequencing and compression (hot-press) molding methods. First, the critical buckling load (Pcr) of composites is analyzed, and then, the influence of compressive load on natural frequency is studied. The critical buckling load-bearing capacity of PLA is enhanced with the reinforcement of NFBF (natural fiber braided yarn fabric). The composite with three layers of NFBF registered the highest critical-buckling load (Pcr) of 374.19 N, and this value is 172.13% high compared to the virgin PLA. Similarly, the natural frequency of the NFBF composites approaches minimum when the applied load is equal to the corresponding Pcr. However, a significant increase in the fundamental frequency is noticed when the applied load is higher than the Pcr.
ISSN:1544-0478
1544-046X