Control of criticality and computation in spiking neuromorphic networks with plasticity

Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticit...

Full description

Bibliographic Details
Main Authors: Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier, Viola Priesemann
Format: Article
Language:English
Published: Nature Portfolio 2020-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-16548-3
_version_ 1818851947546935296
author Benjamin Cramer
David Stöckel
Markus Kreft
Michael Wibral
Johannes Schemmel
Karlheinz Meier
Viola Priesemann
author_facet Benjamin Cramer
David Stöckel
Markus Kreft
Michael Wibral
Johannes Schemmel
Karlheinz Meier
Viola Priesemann
author_sort Benjamin Cramer
collection DOAJ
description Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity.
first_indexed 2024-12-19T07:13:07Z
format Article
id doaj.art-fb7c0a50753d437fb6161c1380bc2dcd
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-19T07:13:07Z
publishDate 2020-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-fb7c0a50753d437fb6161c1380bc2dcd2022-12-21T20:31:09ZengNature PortfolioNature Communications2041-17232020-06-0111111110.1038/s41467-020-16548-3Control of criticality and computation in spiking neuromorphic networks with plasticityBenjamin Cramer0David Stöckel1Markus Kreft2Michael Wibral3Johannes Schemmel4Karlheinz Meier5Viola Priesemann6Kirchhoff-Institute for Physics, Heidelberg UniversityKirchhoff-Institute for Physics, Heidelberg UniversityKirchhoff-Institute for Physics, Heidelberg UniversityCampus Institute for Dynamics of Biological Networks, Georg-August UniversityKirchhoff-Institute for Physics, Heidelberg UniversityKirchhoff-Institute for Physics, Heidelberg UniversityMax-Planck-Institute for Dynamics and Self-OrganizationDesigning efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity.https://doi.org/10.1038/s41467-020-16548-3
spellingShingle Benjamin Cramer
David Stöckel
Markus Kreft
Michael Wibral
Johannes Schemmel
Karlheinz Meier
Viola Priesemann
Control of criticality and computation in spiking neuromorphic networks with plasticity
Nature Communications
title Control of criticality and computation in spiking neuromorphic networks with plasticity
title_full Control of criticality and computation in spiking neuromorphic networks with plasticity
title_fullStr Control of criticality and computation in spiking neuromorphic networks with plasticity
title_full_unstemmed Control of criticality and computation in spiking neuromorphic networks with plasticity
title_short Control of criticality and computation in spiking neuromorphic networks with plasticity
title_sort control of criticality and computation in spiking neuromorphic networks with plasticity
url https://doi.org/10.1038/s41467-020-16548-3
work_keys_str_mv AT benjamincramer controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT davidstockel controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT markuskreft controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT michaelwibral controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT johannesschemmel controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT karlheinzmeier controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT violapriesemann controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity