The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces

We consider the backward shift operator on a sequence Banach space in the context of two infinite-dimensional phenomena: the existence of topologically transitive operators, and the existence of entire analytic functions of the unbounded type. It is well known that the weighted backward shift (for a...

Full description

Bibliographic Details
Main Authors: Zoriana Novosad, Andriy Zagorodnyuk
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/10/1855
_version_ 1797572227161391104
author Zoriana Novosad
Andriy Zagorodnyuk
author_facet Zoriana Novosad
Andriy Zagorodnyuk
author_sort Zoriana Novosad
collection DOAJ
description We consider the backward shift operator on a sequence Banach space in the context of two infinite-dimensional phenomena: the existence of topologically transitive operators, and the existence of entire analytic functions of the unbounded type. It is well known that the weighted backward shift (for an appropriated weight) is topologically transitive on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>c</mi><mn>0</mn></msub><mo>.</mo></mrow></semantics></math></inline-formula> We construct some generalizations of the weighted backward shift for non-separable Banach spaces, which remains topologically transitive. Also, we show that the backward shift, in some sense, generates analytic functions of the unbounded type. We introduce the notion of a generator of analytic functions of the unbounded type on a Banach space and investigate its properties. In addition, we show that, using this operator, one can obtain a quasi-extension operator of analytic functions in a germ of zero for entire analytic functions. The results are supported by examples.
first_indexed 2024-03-10T20:52:20Z
format Article
id doaj.art-fb81558b7c6b4c04bff6cf8d0a78cdb1
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T20:52:20Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-fb81558b7c6b4c04bff6cf8d0a78cdb12023-11-19T18:17:45ZengMDPI AGSymmetry2073-89942023-10-011510185510.3390/sym15101855The Backward Shift and Two Infinite-Dimension Phenomena in Banach SpacesZoriana Novosad0Andriy Zagorodnyuk1Department of Higher Mathematics and Quantitative Methods 10, Lviv University of Trade and Economics, Tuhan-Baranovsky Str., 79005 Lviv, UkraineFaculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., 76018 Ivano-Frankivsk, UkraineWe consider the backward shift operator on a sequence Banach space in the context of two infinite-dimensional phenomena: the existence of topologically transitive operators, and the existence of entire analytic functions of the unbounded type. It is well known that the weighted backward shift (for an appropriated weight) is topologically transitive on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>c</mi><mn>0</mn></msub><mo>.</mo></mrow></semantics></math></inline-formula> We construct some generalizations of the weighted backward shift for non-separable Banach spaces, which remains topologically transitive. Also, we show that the backward shift, in some sense, generates analytic functions of the unbounded type. We introduce the notion of a generator of analytic functions of the unbounded type on a Banach space and investigate its properties. In addition, we show that, using this operator, one can obtain a quasi-extension operator of analytic functions in a germ of zero for entire analytic functions. The results are supported by examples.https://www.mdpi.com/2073-8994/15/10/1855topologically transitive operatorsanalytic functions on Banach spacesanalytic functions of unbounded type
spellingShingle Zoriana Novosad
Andriy Zagorodnyuk
The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces
Symmetry
topologically transitive operators
analytic functions on Banach spaces
analytic functions of unbounded type
title The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces
title_full The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces
title_fullStr The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces
title_full_unstemmed The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces
title_short The Backward Shift and Two Infinite-Dimension Phenomena in Banach Spaces
title_sort backward shift and two infinite dimension phenomena in banach spaces
topic topologically transitive operators
analytic functions on Banach spaces
analytic functions of unbounded type
url https://www.mdpi.com/2073-8994/15/10/1855
work_keys_str_mv AT zoriananovosad thebackwardshiftandtwoinfinitedimensionphenomenainbanachspaces
AT andriyzagorodnyuk thebackwardshiftandtwoinfinitedimensionphenomenainbanachspaces
AT zoriananovosad backwardshiftandtwoinfinitedimensionphenomenainbanachspaces
AT andriyzagorodnyuk backwardshiftandtwoinfinitedimensionphenomenainbanachspaces