Summary: | ABSTRACT: The growth of naturally contaminated pseudomonads on fresh breast and thigh poultry fillets during aerobic storage was studied and modeled as a function of temperature (0–30°C). A statistical comparison of the models for breast and thigh fillets showed that muscle type does not significantly affect the temperature dependence of pseudomonads growth kinetics. A unified model for breast and thigh was developed and validated against pseudomonads growth rate data under isothermal conditions extracted from literature and experimental data under dynamic temperature conditions. The validation results showed a satisfactory performance of the model with the bias and accuracy factors ranging from 0.85 to 1.09 and 1.02 to 1.21, respectively. The model was further used to predict the shelf life of fresh poultry as the time required by pseudomonads to reach the spoilage level for various scenarios of temperature, initial contamination level, and physiological state of pseudomonads demonstrating its application in a risk-based shelf-life assessment of fresh poultry products.
|