Effective utilization of grid‐forming cloud hybrid energy storage systems in islanded clustered dc nano‐grids for improving transient voltage quality and battery lifetime

Abstract This paper proposes and develops the idea of using a community supercapacitor (SC) in an islanded DC multiple nano‐grids (MNG) system. In the proposed structure, the community SC works in tandem with the community/cloud battery energy storage system (CBESS) of the DC MNG. This combination f...

Full description

Bibliographic Details
Main Authors: Seyyed Ali Ghorashi Khalil Abadi, Ali Bidram
Format: Article
Language:English
Published: Wiley 2023-04-01
Series:IET Generation, Transmission & Distribution
Subjects:
Online Access:https://doi.org/10.1049/gtd2.12775
Description
Summary:Abstract This paper proposes and develops the idea of using a community supercapacitor (SC) in an islanded DC multiple nano‐grids (MNG) system. In the proposed structure, the community SC works in tandem with the community/cloud battery energy storage system (CBESS) of the DC MNG. This combination forms a grid‐forming battery‐supercapacitor cloud hybrid energy storage system (CHESS), which is responsible for maintaining the voltage stability and power balance at the common DC bus of the MNG system. Also, to effectively utilize the SC capacity, this paper proposes a modified control structure for each DC nano‐grid enabling the local BESS units to coordinate with the community SC. Then, it is shown that, in the proposed grid‐forming CHESS technology, the output power of all the local and community BESS units has significantly smoother power variations leading to a higher battery lifetime. Additionally, it is shown that the proposed CHESS technology can improve the voltage stability of the system leading to higher voltage quality. Moreover, it is discussed analytically that the proposed CHESS technology requires less energy storage capacity for the community SC compared to its equivalent MNG with a distributed SC architecture. Finally, these results are verified by simulating two case‐study MNGs in MATLAB/Simulink.
ISSN:1751-8687
1751-8695