Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints

Background. Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly c...

Full description

Bibliographic Details
Main Authors: Ochuwa O. George, Nnamdi H. Amaeze, Emmanuel Babatunde, Adebayo A. Otitoloju
Format: Article
Language:English
Published: Pure Earth 2017-01-01
Series:Journal of Health and Pollution
Subjects:
_version_ 1819231051546886144
author Ochuwa O. George
Nnamdi H. Amaeze
Emmanuel Babatunde
Adebayo A. Otitoloju
author_facet Ochuwa O. George
Nnamdi H. Amaeze
Emmanuel Babatunde
Adebayo A. Otitoloju
author_sort Ochuwa O. George
collection DOAJ
description Background. Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly consumed fish in Lagos. Objectives. This study investigated the effects of two commonly used antifouling paints (Berger TBT-free (A/F783 (H)), reddish brown color and Silka Marine lead based paint, pale orange color) on a non-target catfish species, Clarias gariepinus. Methods. The study involved an initial 96-hour acute toxicity assay followed by chronic toxicity evaluation (using 1/10th and 1/100th 96-hour median lethal concentration (LC>50) values) for 28 days to determine the ability of the paints to induce micronucleus and red blood cell abnormalities, and histopathological as well as oxidative stress effects in the catfish.Examined anti-oxidative stress enzyme activities include superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione-s-transferase (GST). Results. Acute toxicity evaluation results indicated that the Berger paint was 16.1-times more toxic than Silka paint with 96-hour LC50 values of 0.71 mg/L and 11.49 mg/L, respectively. Results from the biochemical assay indicated significantly higher (P<0.05) levels of a lipid peroxidation product, malondialdehyde, in Silka-exposed catfish compared to the control. All enzymes showed significantly higher activities in Berger paint-exposed catfish compared to the control. There was evidence of micronucleated and binucleated cells in the red blood cells of fish exposed to both paints. Histopathological assessment indicated that the exposed fish gills showed evidence of abnormalities such as curved lamellae epithelial necrosis, epithelial lifting and hyperplasia. The liver samples of the catfish showed evidence of portal inflammation as well as mild to severe steatosis, while the gonads showed varying percentages of follicle degeneration. Conclusions. The present study combined an array of biomarkers to determine the negative health impacts of two commonly used antifouling paints on non-target catfish inhabiting Lagos Lagoon. Further in situ studies are recommended to determine the current status of the lagoon fish. Ethics Approval. Ethical approval was obtained from the Department of Zoology, University of Lagos, Post-Graduate Committee. Note that this work commenced before the establishment of the University of Lagos Ethical Committee for the use of animals and humans in scientific studies. The committee does not give retroactive approval but stands by existing approvals before its establishment. However, this study followed the World Medical Association principles on the treatment of animals used in research (https://www.wma.net/policies-post/wma-statement-on-animal-use-in-biomedical-research/), and also American Fisheries Society Guidelines for the Use of Fishes in Research (https://fisheries.org/policy-media/science-guidelines/guidelines-for-the-use-of-fishes-in-research/) Competing Interests. The authors declare no competing financial interests
first_indexed 2024-12-23T11:38:49Z
format Article
id doaj.art-fb8f677e47124c2cafd07adce7b2f809
institution Directory Open Access Journal
issn 2156-9614
2156-9614
language English
last_indexed 2024-12-23T11:38:49Z
publishDate 2017-01-01
publisher Pure Earth
record_format Article
series Journal of Health and Pollution
spelling doaj.art-fb8f677e47124c2cafd07adce7b2f8092022-12-21T17:48:33ZengPure EarthJournal of Health and Pollution2156-96142156-96142017-01-01716718210.5696/2156-9614-7.16.712156-9614-7-16-71Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling PaintsOchuwa O. George0Nnamdi H. Amaeze1Emmanuel Babatunde2Adebayo A. Otitoloju3Environmental Toxicology and Pollution Management Laboratory, Department of Zoology, University of Lagos, NigeriaEnvironmental Toxicology and Pollution Management Laboratory, Department of Zoology, University of Lagos, NigeriaFisheries Unit, Department of Marine Sciences, University of Lagos, Akoka-Yaba, NigeriaEnvironmental Toxicology and Pollution Management Laboratory, Department of Zoology, University of Lagos, NigeriaBackground. Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly consumed fish in Lagos. Objectives. This study investigated the effects of two commonly used antifouling paints (Berger TBT-free (A/F783 (H)), reddish brown color and Silka Marine lead based paint, pale orange color) on a non-target catfish species, Clarias gariepinus. Methods. The study involved an initial 96-hour acute toxicity assay followed by chronic toxicity evaluation (using 1/10th and 1/100th 96-hour median lethal concentration (LC>50) values) for 28 days to determine the ability of the paints to induce micronucleus and red blood cell abnormalities, and histopathological as well as oxidative stress effects in the catfish.Examined anti-oxidative stress enzyme activities include superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione-s-transferase (GST). Results. Acute toxicity evaluation results indicated that the Berger paint was 16.1-times more toxic than Silka paint with 96-hour LC50 values of 0.71 mg/L and 11.49 mg/L, respectively. Results from the biochemical assay indicated significantly higher (P<0.05) levels of a lipid peroxidation product, malondialdehyde, in Silka-exposed catfish compared to the control. All enzymes showed significantly higher activities in Berger paint-exposed catfish compared to the control. There was evidence of micronucleated and binucleated cells in the red blood cells of fish exposed to both paints. Histopathological assessment indicated that the exposed fish gills showed evidence of abnormalities such as curved lamellae epithelial necrosis, epithelial lifting and hyperplasia. The liver samples of the catfish showed evidence of portal inflammation as well as mild to severe steatosis, while the gonads showed varying percentages of follicle degeneration. Conclusions. The present study combined an array of biomarkers to determine the negative health impacts of two commonly used antifouling paints on non-target catfish inhabiting Lagos Lagoon. Further in situ studies are recommended to determine the current status of the lagoon fish. Ethics Approval. Ethical approval was obtained from the Department of Zoology, University of Lagos, Post-Graduate Committee. Note that this work commenced before the establishment of the University of Lagos Ethical Committee for the use of animals and humans in scientific studies. The committee does not give retroactive approval but stands by existing approvals before its establishment. However, this study followed the World Medical Association principles on the treatment of animals used in research (https://www.wma.net/policies-post/wma-statement-on-animal-use-in-biomedical-research/), and also American Fisheries Society Guidelines for the Use of Fishes in Research (https://fisheries.org/policy-media/science-guidelines/guidelines-for-the-use-of-fishes-in-research/) Competing Interests. The authors declare no competing financial interestsbiocidesnon-target organismsmaritime industryaquatic pollutionbiomarkerhistopathology
spellingShingle Ochuwa O. George
Nnamdi H. Amaeze
Emmanuel Babatunde
Adebayo A. Otitoloju
Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
Journal of Health and Pollution
biocides
non-target organisms
maritime industry
aquatic pollution
biomarker
histopathology
title Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_full Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_fullStr Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_full_unstemmed Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_short Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_sort genotoxic histopathological and oxidative stress responses in catfish clarias gariepinus exposed to two antifouling paints
topic biocides
non-target organisms
maritime industry
aquatic pollution
biomarker
histopathology
work_keys_str_mv AT ochuwaogeorge genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints
AT nnamdihamaeze genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints
AT emmanuelbabatunde genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints
AT adebayoaotitoloju genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints