Empirical E-Bayesian estimation for the parameter of Poisson distribution

This paper introduces a new method of estimation, empirical E-Bayesian estimation. In this method, we consider the hyperparameters of E-Bayesian estimation are unknown. We compute the E-Bayesian and empirical E-Bayesian estimates for the parameter of Poisson distribution based on a complete sample....

Full description

Bibliographic Details
Main Author: Heba S. Mohammed
Format: Article
Language:English
Published: AIMS Press 2021-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021475?viewType=HTML
_version_ 1819067522913140736
author Heba S. Mohammed
author_facet Heba S. Mohammed
author_sort Heba S. Mohammed
collection DOAJ
description This paper introduces a new method of estimation, empirical E-Bayesian estimation. In this method, we consider the hyperparameters of E-Bayesian estimation are unknown. We compute the E-Bayesian and empirical E-Bayesian estimates for the parameter of Poisson distribution based on a complete sample. For our purpose, we consider the case of the squared error loss function. The E-posterior risk and empirical E-posterior risk are computed. A comparison between E-Bayesian and empirical E- Bayesian methods with the corresponding maximum likelihood estimation is made using the Monte Carlo simulation. A relevant application is utilized to illustrate the applicability of multiple estimators.
first_indexed 2024-12-21T16:19:36Z
format Article
id doaj.art-fb97358ced744538884953a6dc504560
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-21T16:19:36Z
publishDate 2021-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-fb97358ced744538884953a6dc5045602022-12-21T18:57:37ZengAIMS PressAIMS Mathematics2473-69882021-05-01688205822010.3934/math.2021475Empirical E-Bayesian estimation for the parameter of Poisson distributionHeba S. Mohammed01. Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia 2. Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, 72511, EgyptThis paper introduces a new method of estimation, empirical E-Bayesian estimation. In this method, we consider the hyperparameters of E-Bayesian estimation are unknown. We compute the E-Bayesian and empirical E-Bayesian estimates for the parameter of Poisson distribution based on a complete sample. For our purpose, we consider the case of the squared error loss function. The E-posterior risk and empirical E-posterior risk are computed. A comparison between E-Bayesian and empirical E- Bayesian methods with the corresponding maximum likelihood estimation is made using the Monte Carlo simulation. A relevant application is utilized to illustrate the applicability of multiple estimators.https://www.aimspress.com/article/doi/10.3934/math.2021475?viewType=HTMLpoisson distributione-bayesian estimationempirical e-bayesian estimatione-posterior riskempirical e-posterior risk
spellingShingle Heba S. Mohammed
Empirical E-Bayesian estimation for the parameter of Poisson distribution
AIMS Mathematics
poisson distribution
e-bayesian estimation
empirical e-bayesian estimation
e-posterior risk
empirical e-posterior risk
title Empirical E-Bayesian estimation for the parameter of Poisson distribution
title_full Empirical E-Bayesian estimation for the parameter of Poisson distribution
title_fullStr Empirical E-Bayesian estimation for the parameter of Poisson distribution
title_full_unstemmed Empirical E-Bayesian estimation for the parameter of Poisson distribution
title_short Empirical E-Bayesian estimation for the parameter of Poisson distribution
title_sort empirical e bayesian estimation for the parameter of poisson distribution
topic poisson distribution
e-bayesian estimation
empirical e-bayesian estimation
e-posterior risk
empirical e-posterior risk
url https://www.aimspress.com/article/doi/10.3934/math.2021475?viewType=HTML
work_keys_str_mv AT hebasmohammed empiricalebayesianestimationfortheparameterofpoissondistribution