Detecting possible pairs of materials for composites using a material word co-occurrence network.
Composite materials are popular because of their high performance capabilities, but new material development is time-consuming. To accelerate this process, researchers studying material informatics, an academic discipline combining computational science and material science, have developed less time...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLoS ONE |
Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297361&type=printable |
_version_ | 1827046563159998464 |
---|---|
author | Chika Ishii Kimitaka Asatani Ichiro Sakata |
author_facet | Chika Ishii Kimitaka Asatani Ichiro Sakata |
author_sort | Chika Ishii |
collection | DOAJ |
description | Composite materials are popular because of their high performance capabilities, but new material development is time-consuming. To accelerate this process, researchers studying material informatics, an academic discipline combining computational science and material science, have developed less time-consuming approaches for predicting possible material combinations. However, these processes remain problematic because some materials are not suited for them. The limitations of specific candidates for new composites may cause potential new material pairs to be overlooked. To solve this problem, we developed a new method to predict possible composite material pairs by considering more materials than previous techniques. We predicted possible material pairs by conducting link predictions of material word co-occurrence networks while assuming that co-occurring material word pairs in scientific papers on composites were reported as composite materials. As a result, we succeeded in predicting the co-occurrence of material words with high specificity. Nodes tended to link to many other words, generating new links in the created co-occurrence material word network; notably, the number of material words co-occurring with graphene increased rapidly. This phenomenon confirmed that graphene is an attractive composite component. We expect our method to contribute to the accelerated development of new composite materials. |
first_indexed | 2024-03-07T21:59:39Z |
format | Article |
id | doaj.art-fb996c253c734d35bf40346df2b4abfb |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2025-02-18T14:39:20Z |
publishDate | 2024-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-fb996c253c734d35bf40346df2b4abfb2024-10-26T05:30:58ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-01191e029736110.1371/journal.pone.0297361Detecting possible pairs of materials for composites using a material word co-occurrence network.Chika IshiiKimitaka AsataniIchiro SakataComposite materials are popular because of their high performance capabilities, but new material development is time-consuming. To accelerate this process, researchers studying material informatics, an academic discipline combining computational science and material science, have developed less time-consuming approaches for predicting possible material combinations. However, these processes remain problematic because some materials are not suited for them. The limitations of specific candidates for new composites may cause potential new material pairs to be overlooked. To solve this problem, we developed a new method to predict possible composite material pairs by considering more materials than previous techniques. We predicted possible material pairs by conducting link predictions of material word co-occurrence networks while assuming that co-occurring material word pairs in scientific papers on composites were reported as composite materials. As a result, we succeeded in predicting the co-occurrence of material words with high specificity. Nodes tended to link to many other words, generating new links in the created co-occurrence material word network; notably, the number of material words co-occurring with graphene increased rapidly. This phenomenon confirmed that graphene is an attractive composite component. We expect our method to contribute to the accelerated development of new composite materials.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297361&type=printable |
spellingShingle | Chika Ishii Kimitaka Asatani Ichiro Sakata Detecting possible pairs of materials for composites using a material word co-occurrence network. PLoS ONE |
title | Detecting possible pairs of materials for composites using a material word co-occurrence network. |
title_full | Detecting possible pairs of materials for composites using a material word co-occurrence network. |
title_fullStr | Detecting possible pairs of materials for composites using a material word co-occurrence network. |
title_full_unstemmed | Detecting possible pairs of materials for composites using a material word co-occurrence network. |
title_short | Detecting possible pairs of materials for composites using a material word co-occurrence network. |
title_sort | detecting possible pairs of materials for composites using a material word co occurrence network |
url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297361&type=printable |
work_keys_str_mv | AT chikaishii detectingpossiblepairsofmaterialsforcompositesusingamaterialwordcooccurrencenetwork AT kimitakaasatani detectingpossiblepairsofmaterialsforcompositesusingamaterialwordcooccurrencenetwork AT ichirosakata detectingpossiblepairsofmaterialsforcompositesusingamaterialwordcooccurrencenetwork |