Signal mixture estimation for degenerate heavy Higgses using a deep neural network

Abstract If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challen...

Full description

Bibliographic Details
Main Authors: Anders Kvellestad, Steffen Maeland, Inga Strümke
Format: Article
Language:English
Published: SpringerOpen 2018-12-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-6455-z
_version_ 1818179719989821440
author Anders Kvellestad
Steffen Maeland
Inga Strümke
author_facet Anders Kvellestad
Steffen Maeland
Inga Strümke
author_sort Anders Kvellestad
collection DOAJ
description Abstract If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a $$\sim 20\%$$ ∼20% improvement in the estimate uncertainty.
first_indexed 2024-12-11T21:08:21Z
format Article
id doaj.art-fba7f05f56cd4c72847797adf1fa7141
institution Directory Open Access Journal
issn 1434-6044
1434-6052
language English
last_indexed 2024-12-11T21:08:21Z
publishDate 2018-12-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-fba7f05f56cd4c72847797adf1fa71412022-12-22T00:50:48ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522018-12-01781211110.1140/epjc/s10052-018-6455-zSignal mixture estimation for degenerate heavy Higgses using a deep neural networkAnders Kvellestad0Steffen Maeland1Inga Strümke2Department of Physics, University of OsloDepartment of Physics and Technology, University of BergenDepartment of Physics and Technology, University of BergenAbstract If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a $$\sim 20\%$$ ∼20% improvement in the estimate uncertainty.http://link.springer.com/article/10.1140/epjc/s10052-018-6455-z
spellingShingle Anders Kvellestad
Steffen Maeland
Inga Strümke
Signal mixture estimation for degenerate heavy Higgses using a deep neural network
European Physical Journal C: Particles and Fields
title Signal mixture estimation for degenerate heavy Higgses using a deep neural network
title_full Signal mixture estimation for degenerate heavy Higgses using a deep neural network
title_fullStr Signal mixture estimation for degenerate heavy Higgses using a deep neural network
title_full_unstemmed Signal mixture estimation for degenerate heavy Higgses using a deep neural network
title_short Signal mixture estimation for degenerate heavy Higgses using a deep neural network
title_sort signal mixture estimation for degenerate heavy higgses using a deep neural network
url http://link.springer.com/article/10.1140/epjc/s10052-018-6455-z
work_keys_str_mv AT anderskvellestad signalmixtureestimationfordegenerateheavyhiggsesusingadeepneuralnetwork
AT steffenmaeland signalmixtureestimationfordegenerateheavyhiggsesusingadeepneuralnetwork
AT ingastrumke signalmixtureestimationfordegenerateheavyhiggsesusingadeepneuralnetwork