Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis

The structural (<i>S</i>) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the <i>S</i> parameter for enhanced forward osmosis (FO)...

Full description

Bibliographic Details
Main Authors: Jin Fei Sark, Nora Jullok, Woei Jye Lau
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/11/6/448
_version_ 1797530090102325248
author Jin Fei Sark
Nora Jullok
Woei Jye Lau
author_facet Jin Fei Sark
Nora Jullok
Woei Jye Lau
author_sort Jin Fei Sark
collection DOAJ
description The structural (<i>S</i>) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the <i>S</i> parameter for enhanced forward osmosis (FO). Thin film composite (TFC) membranes using polyamide (PA) as an active layer and different polysulfone:polyethersulfone (PSf:PES) supports as sublayers were prepared via the phase inversion technique, followed by interfacial polymerization. The membrane made with a PSf:PES ratio of 2:3 was observed to have the lowest contact angle (CA) with the highest overall porosity. It also had the highest water permeability (<i>A</i>; 3.79 ± 1.06 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) and salt permeability (<i>B</i>; 8.42 ± 2.34 g m<sup>−2</sup> h<sup>−1</sup>), as well as a good NaCl rejection rate of 74%. An increase in porosity at elevated temperatures from 30 to 40 °C decreased <i>S<sub>int</sub></i> from 184 ± 4 to 159 ± 2 μm. At elevated temperatures, significant increases in the water flux from 13.81 to 42.86 L m<sup>−2</sup> h<sup>−1</sup> and reverse salt flux (RSF) from 12.74 to 460 g m<sup>−2</sup> h<sup>−1</sup> occur, reducing <i>S<sub>eff</sub></i> from 152 ± 26 to 120 ± 14 μm. <i>S<sub>int</sub></i> is a temperature-dependent parameter, whereas <i>S<sub>eff</sub></i> can only be reduced in a high-water- permeability membrane at elevated temperatures.
first_indexed 2024-03-10T10:23:00Z
format Article
id doaj.art-fbac084e7d744900973a7831edcb3c2e
institution Directory Open Access Journal
issn 2077-0375
language English
last_indexed 2024-03-10T10:23:00Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Membranes
spelling doaj.art-fbac084e7d744900973a7831edcb3c2e2023-11-22T00:16:53ZengMDPI AGMembranes2077-03752021-06-0111644810.3390/membranes11060448Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward OsmosisJin Fei Sark0Nora Jullok1Woei Jye Lau2Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, MalaysiaFaculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, MalaysiaAdvanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Skudai 81310, Johor, MalaysiaThe structural (<i>S</i>) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the <i>S</i> parameter for enhanced forward osmosis (FO). Thin film composite (TFC) membranes using polyamide (PA) as an active layer and different polysulfone:polyethersulfone (PSf:PES) supports as sublayers were prepared via the phase inversion technique, followed by interfacial polymerization. The membrane made with a PSf:PES ratio of 2:3 was observed to have the lowest contact angle (CA) with the highest overall porosity. It also had the highest water permeability (<i>A</i>; 3.79 ± 1.06 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) and salt permeability (<i>B</i>; 8.42 ± 2.34 g m<sup>−2</sup> h<sup>−1</sup>), as well as a good NaCl rejection rate of 74%. An increase in porosity at elevated temperatures from 30 to 40 °C decreased <i>S<sub>int</sub></i> from 184 ± 4 to 159 ± 2 μm. At elevated temperatures, significant increases in the water flux from 13.81 to 42.86 L m<sup>−2</sup> h<sup>−1</sup> and reverse salt flux (RSF) from 12.74 to 460 g m<sup>−2</sup> h<sup>−1</sup> occur, reducing <i>S<sub>eff</sub></i> from 152 ± 26 to 120 ± 14 μm. <i>S<sub>int</sub></i> is a temperature-dependent parameter, whereas <i>S<sub>eff</sub></i> can only be reduced in a high-water- permeability membrane at elevated temperatures.https://www.mdpi.com/2077-0375/11/6/448structural parameterforward osmosiscomposite membranesublayer
spellingShingle Jin Fei Sark
Nora Jullok
Woei Jye Lau
Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
Membranes
structural parameter
forward osmosis
composite membrane
sublayer
title Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
title_full Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
title_fullStr Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
title_full_unstemmed Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
title_short Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
title_sort improving the structural parameter of the membrane sublayer for enhanced forward osmosis
topic structural parameter
forward osmosis
composite membrane
sublayer
url https://www.mdpi.com/2077-0375/11/6/448
work_keys_str_mv AT jinfeisark improvingthestructuralparameterofthemembranesublayerforenhancedforwardosmosis
AT norajullok improvingthestructuralparameterofthemembranesublayerforenhancedforwardosmosis
AT woeijyelau improvingthestructuralparameterofthemembranesublayerforenhancedforwardosmosis