Implementation of Power-Efficient Class AB Miller Amplifiers Using Resistive Local Common-Mode Feedback

An approach to implement single-ended power-efficient static class-AB Miller op-amps with symmetrical and significantly enhanced slew-rate and accurately controlled output quiescent current is introduced. The proposed op-amp can drive a wide range of resistive and capacitive loads. The output positi...

Full description

Bibliographic Details
Main Authors: Anindita Paul, Mario Renteria-Pinon, Jaime Ramirez-Angulo, Ricardo Bolaños-Pérez, Héctor Vázquez-Leal, Jesús Huerta-Chua, Alejandro Diaz-Sánchez
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Journal of Low Power Electronics and Applications
Subjects:
Online Access:https://www.mdpi.com/2079-9268/11/3/31
Description
Summary:An approach to implement single-ended power-efficient static class-AB Miller op-amps with symmetrical and significantly enhanced slew-rate and accurately controlled output quiescent current is introduced. The proposed op-amp can drive a wide range of resistive and capacitive loads. The output positive and negative currents can be much higher than the total op-amp quiescent current. The enhanced performance is achieved by utilizing a simple low-power auxiliary amplifier with resistive local common-mode feedback that increases the quiescent power dissipation by less than 10%. The proposed class AB op-amp is characterized by significantly enhanced large-signal dynamic, static current efficiency, and small-signal figures of merits. The dynamic current efficiency is 15.6 higher, the static current efficiency is 10.6 times higher, and the small-signal figure of merit is 2.3 times higher than the conventional class-A op-amp. A global figure of merit that determines an op-amp’s ultimate speed is 6.33 times higher than the conventional class A op-amp.
ISSN:2079-9268