Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2

The paper focuses on the admissibility problem of descriptor fractional-order systems (DFOSs). The alternate admissibility criteria are addressed for DFOSs with order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>...

Full description

Bibliographic Details
Main Authors: Ying Di, Jin-Xi Zhang, Xuefeng Zhang
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/8/577
_version_ 1797584735796461568
author Ying Di
Jin-Xi Zhang
Xuefeng Zhang
author_facet Ying Di
Jin-Xi Zhang
Xuefeng Zhang
author_sort Ying Di
collection DOAJ
description The paper focuses on the admissibility problem of descriptor fractional-order systems (DFOSs). The alternate admissibility criteria are addressed for DFOSs with order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> which involve a non-strict linear matrix inequality (LMI) method and a strict LMI method, respectively. The forms of non-strict and strict LMIs are brand new and distinguished with the existing literature, which fills the gaps of studies for admissibility. These necessary and sufficient conditions of admissibility are available to the order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> without separating the order ranges into <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Based on the special position of singular matrix, the non-strict LMI criterion has an advantage in handling the DFOSs with uncertain derivative matrices. For the strict LMI form, a method involving least real decision variables is derived which is more convenient to process the practical solution. Three numerical examples are given to illustrate the validity of the proposed results.
first_indexed 2024-03-10T23:55:51Z
format Article
id doaj.art-fbbc26b5aade4f2baaf47a23f6907cd7
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T23:55:51Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-fbbc26b5aade4f2baaf47a23f6907cd72023-11-19T01:10:52ZengMDPI AGFractal and Fractional2504-31102023-07-017857710.3390/fractalfract7080577Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2Ying Di0Jin-Xi Zhang1Xuefeng Zhang2College of Sciences, Northeastern University, Shenyang 110819, ChinaState Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, ChinaCollege of Sciences, Northeastern University, Shenyang 110819, ChinaThe paper focuses on the admissibility problem of descriptor fractional-order systems (DFOSs). The alternate admissibility criteria are addressed for DFOSs with order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> which involve a non-strict linear matrix inequality (LMI) method and a strict LMI method, respectively. The forms of non-strict and strict LMIs are brand new and distinguished with the existing literature, which fills the gaps of studies for admissibility. These necessary and sufficient conditions of admissibility are available to the order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> without separating the order ranges into <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Based on the special position of singular matrix, the non-strict LMI criterion has an advantage in handling the DFOSs with uncertain derivative matrices. For the strict LMI form, a method involving least real decision variables is derived which is more convenient to process the practical solution. Three numerical examples are given to illustrate the validity of the proposed results.https://www.mdpi.com/2504-3110/7/8/577descriptor fractional order systemsadmissibilityunified criterionlinear matrix inequality
spellingShingle Ying Di
Jin-Xi Zhang
Xuefeng Zhang
Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2
Fractal and Fractional
descriptor fractional order systems
admissibility
unified criterion
linear matrix inequality
title Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2
title_full Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2
title_fullStr Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2
title_full_unstemmed Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2
title_short Alternate Admissibility LMI Criteria for Descriptor Fractional Order Systems with 0 < <i>α</i> < 2
title_sort alternate admissibility lmi criteria for descriptor fractional order systems with 0 i α i 2
topic descriptor fractional order systems
admissibility
unified criterion
linear matrix inequality
url https://www.mdpi.com/2504-3110/7/8/577
work_keys_str_mv AT yingdi alternateadmissibilitylmicriteriafordescriptorfractionalordersystemswith0iai2
AT jinxizhang alternateadmissibilitylmicriteriafordescriptorfractionalordersystemswith0iai2
AT xuefengzhang alternateadmissibilitylmicriteriafordescriptorfractionalordersystemswith0iai2