Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures
High consumption of electricity represents an economic and social problem in warm places, caused by the massive use of cooling machines. Absorption systems are a sustainable method for air conditioning applications. However, environmental conditions should be analyzed to avoid crystallization proble...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1073/11/2/259 |
_version_ | 1798004007278477312 |
---|---|
author | Jesús Cerezo Rosenberg J. Romero Jonathan Ibarra Antonio Rodríguez Gisela Montero Alexis Acuña |
author_facet | Jesús Cerezo Rosenberg J. Romero Jonathan Ibarra Antonio Rodríguez Gisela Montero Alexis Acuña |
author_sort | Jesús Cerezo |
collection | DOAJ |
description | High consumption of electricity represents an economic and social problem in warm places, caused by the massive use of cooling machines. Absorption systems are a sustainable method for air conditioning applications. However, environmental conditions should be analyzed to avoid crystallization problems of the working mixture. This article presents a thermal analysis of a solar absorption cooling system in dynamic conditions using NH3-H2O, H2O-LiBr, NH3-NaSCN, NH3-LiNO3, and H2O-LiCl working mixtures using Equation Engineering Solver (EES) and TRaNsient SYstem Simulation (TRNSYS) software. A solar collector area of 42.5 m2 was selected to carry out the thermal analysis. The results showed that H2O-LiCl obtained the maximum solar (0.67) and minimum heating (0.33) fraction. However, it obtained the maximum lost heat fraction (0.12), in spite of obtaining the best coefficient of performance (COP) among the other working mixtures, due mainly to a crystallization problem. The gain fraction (GF) parameter was used to select the adequate solar collector number for each working mixture. NH3-LiNO3 and NH3-H2O obtained the highest GF (up 6), and both obtained the maximum solar (0.91) and minimum heating (0.09) fraction, respectively, using 88.8 and 100.4 m2 of solar collector area, respectively. |
first_indexed | 2024-04-11T12:17:46Z |
format | Article |
id | doaj.art-fbbddd89022040b5a6d34853fc1444e6 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-04-11T12:17:46Z |
publishDate | 2018-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-fbbddd89022040b5a6d34853fc1444e62022-12-22T04:24:16ZengMDPI AGEnergies1996-10732018-01-0111225910.3390/en11020259en11020259Dynamic Simulation of an Absorption Cooling System with Different Working MixturesJesús Cerezo0Rosenberg J. Romero1Jonathan Ibarra2Antonio Rodríguez3Gisela Montero4Alexis Acuña5Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, MexicoCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, MexicoCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, MexicoCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, MexicoUniversidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Insurgentes Este, Mexicali 21280, Baja California, MexicoUniversidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Insurgentes Este, Mexicali 21280, Baja California, MexicoHigh consumption of electricity represents an economic and social problem in warm places, caused by the massive use of cooling machines. Absorption systems are a sustainable method for air conditioning applications. However, environmental conditions should be analyzed to avoid crystallization problems of the working mixture. This article presents a thermal analysis of a solar absorption cooling system in dynamic conditions using NH3-H2O, H2O-LiBr, NH3-NaSCN, NH3-LiNO3, and H2O-LiCl working mixtures using Equation Engineering Solver (EES) and TRaNsient SYstem Simulation (TRNSYS) software. A solar collector area of 42.5 m2 was selected to carry out the thermal analysis. The results showed that H2O-LiCl obtained the maximum solar (0.67) and minimum heating (0.33) fraction. However, it obtained the maximum lost heat fraction (0.12), in spite of obtaining the best coefficient of performance (COP) among the other working mixtures, due mainly to a crystallization problem. The gain fraction (GF) parameter was used to select the adequate solar collector number for each working mixture. NH3-LiNO3 and NH3-H2O obtained the highest GF (up 6), and both obtained the maximum solar (0.91) and minimum heating (0.09) fraction, respectively, using 88.8 and 100.4 m2 of solar collector area, respectively.http://www.mdpi.com/1996-1073/11/2/259solar absorption coolingevacuated tube solar collectordynamic conditioncrystallization |
spellingShingle | Jesús Cerezo Rosenberg J. Romero Jonathan Ibarra Antonio Rodríguez Gisela Montero Alexis Acuña Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures Energies solar absorption cooling evacuated tube solar collector dynamic condition crystallization |
title | Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures |
title_full | Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures |
title_fullStr | Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures |
title_full_unstemmed | Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures |
title_short | Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures |
title_sort | dynamic simulation of an absorption cooling system with different working mixtures |
topic | solar absorption cooling evacuated tube solar collector dynamic condition crystallization |
url | http://www.mdpi.com/1996-1073/11/2/259 |
work_keys_str_mv | AT jesuscerezo dynamicsimulationofanabsorptioncoolingsystemwithdifferentworkingmixtures AT rosenbergjromero dynamicsimulationofanabsorptioncoolingsystemwithdifferentworkingmixtures AT jonathanibarra dynamicsimulationofanabsorptioncoolingsystemwithdifferentworkingmixtures AT antoniorodriguez dynamicsimulationofanabsorptioncoolingsystemwithdifferentworkingmixtures AT giselamontero dynamicsimulationofanabsorptioncoolingsystemwithdifferentworkingmixtures AT alexisacuna dynamicsimulationofanabsorptioncoolingsystemwithdifferentworkingmixtures |