The effect of the Fourier number on calculation of an unsteady heat transfer of building walls

When the temperature changes in any side of construction, the heat flow diffusing through construction also changes and it is varying until the stabilized steady state conditions is reached. In real terms, the heat exchange process in buildings is an unsteady state, consequently varying in time. Vol...

Full description

Bibliographic Details
Main Authors: Darius Pupeikis, Vytautas Stankevičius, Arūnas Burlingis
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2010-06-01
Series:Journal of Civil Engineering and Management
Subjects:
Online Access:https://journals.vgtu.lt/index.php/JCEM/article/view/5951
_version_ 1828937743173943296
author Darius Pupeikis
Vytautas Stankevičius
Arūnas Burlingis
author_facet Darius Pupeikis
Vytautas Stankevičius
Arūnas Burlingis
author_sort Darius Pupeikis
collection DOAJ
description When the temperature changes in any side of construction, the heat flow diffusing through construction also changes and it is varying until the stabilized steady state conditions is reached. In real terms, the heat exchange process in buildings is an unsteady state, consequently varying in time. Volatility of the heat exchange process is influenced by oscillating external temperature, internal heat gains, solar radiation and other factors that affect the heat balance of building. While calculating unsteady heat exchanges, it is important to divide the material into the right number of conditional layers. A conditional layer is material's thickness, in which an assumed process of steady heat transfer takes place. The time step is the second parameter which affects the accuracy of calculation of unsteady heat transfer. This parameter defines time during which temperature diffuses step by step through the conditional layer. Thermal diffusivity is the last parameter, which defines the equalization speed of the temperature in conditional layer. A combination of all these parameters is expressed as the Fourier number. Our research has showed that it's rational to divide layers of enclosure into equal thermal diffusions. Also, the cooling (heating) speed and the acceleration values of conditional layers significantly affect the accuracy of calculation. Santrauka Pasikeitus temperatūrai bet kurioje atitvaros pusese, pasikeičia ir šilumos srautas, sklindantis per atitvara, kuris kinta tol, kol tampa nuolatinis (stacionarus), atsiranda šilumine pusiausvyra. Realiomis salygomis šilumos mainai pastatuose vyksta nestacionarios būkles, t. y. kinta laiko atžvilgiu. Šiluminiu mainu procesu nepastovumas atsiranda svyruojant lauko oro temperatūrai, išsiskiriant šilumos pritekejimams pastate, veikiant saules spinduliuotei ar kitiems veiksniams, kurie daro itaka šiluminiam visapastato balansui. Skaičiuojant nestacionariuosius šilumos mainus, svarbu tinkamai sudalinti medžiaga reikiamu sluoksneliu skaičiumi. Sluoksnelis ‐ tai medžiagos storis, kuriame menamai vyksta stacionarus šilumos perdavimas. Laiko žingsnis, kuriuo temperatūra šuoliuoja per sluoksnelius, ir temperatūrinis laidis, kuris išreiškia temperatūros suvienodejimo sparta, tai dar du parametrai, darantys poveiki skaičiavimo tikslumui. Visu šiu parametru derinys išreiškiamas Furje kriterijumi. Atlikti tyrimai parode, kad sluoksnelius racionalu sudalinti vienodomis temperatūrinemis pralaidomis, o sluoksneliu aušimo (šilimo) greičio ir pagreičio vertes daro svaria itaka skaičiavimo tikslumui. First Published Online: 24 Jun 2011 Reikšminiai žodžiai: nestacionarus šilumos perdavimas, Furje kriterijus, aušimo (šilimo) greitis, aušimo (šilimo) pagreitis, salyginis sluoksnio storis, temperatūrine pralaida, karšta deže
first_indexed 2024-12-14T02:29:35Z
format Article
id doaj.art-fbcfeda5f3f54293819eb216ba6847d0
institution Directory Open Access Journal
issn 1392-3730
1822-3605
language English
last_indexed 2024-12-14T02:29:35Z
publishDate 2010-06-01
publisher Vilnius Gediminas Technical University
record_format Article
series Journal of Civil Engineering and Management
spelling doaj.art-fbcfeda5f3f54293819eb216ba6847d02022-12-21T23:20:18ZengVilnius Gediminas Technical UniversityJournal of Civil Engineering and Management1392-37301822-36052010-06-01162The effect of the Fourier number on calculation of an unsteady heat transfer of building wallsDarius Pupeikis0Vytautas Stankevičius1Arūnas Burlingis2Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentų g. 48, LT-51367 Kaunas, LithuaniaInstitute of Architecture and Construction, Laboratory of Thermal Building Physics, Tunelio g. 60, LT-44405 Kaunas, LithuaniaInstitute of Architecture and Construction, Laboratory of Thermal Building Physics, Tunelio g. 60, LT-44405 Kaunas, LithuaniaWhen the temperature changes in any side of construction, the heat flow diffusing through construction also changes and it is varying until the stabilized steady state conditions is reached. In real terms, the heat exchange process in buildings is an unsteady state, consequently varying in time. Volatility of the heat exchange process is influenced by oscillating external temperature, internal heat gains, solar radiation and other factors that affect the heat balance of building. While calculating unsteady heat exchanges, it is important to divide the material into the right number of conditional layers. A conditional layer is material's thickness, in which an assumed process of steady heat transfer takes place. The time step is the second parameter which affects the accuracy of calculation of unsteady heat transfer. This parameter defines time during which temperature diffuses step by step through the conditional layer. Thermal diffusivity is the last parameter, which defines the equalization speed of the temperature in conditional layer. A combination of all these parameters is expressed as the Fourier number. Our research has showed that it's rational to divide layers of enclosure into equal thermal diffusions. Also, the cooling (heating) speed and the acceleration values of conditional layers significantly affect the accuracy of calculation. Santrauka Pasikeitus temperatūrai bet kurioje atitvaros pusese, pasikeičia ir šilumos srautas, sklindantis per atitvara, kuris kinta tol, kol tampa nuolatinis (stacionarus), atsiranda šilumine pusiausvyra. Realiomis salygomis šilumos mainai pastatuose vyksta nestacionarios būkles, t. y. kinta laiko atžvilgiu. Šiluminiu mainu procesu nepastovumas atsiranda svyruojant lauko oro temperatūrai, išsiskiriant šilumos pritekejimams pastate, veikiant saules spinduliuotei ar kitiems veiksniams, kurie daro itaka šiluminiam visapastato balansui. Skaičiuojant nestacionariuosius šilumos mainus, svarbu tinkamai sudalinti medžiaga reikiamu sluoksneliu skaičiumi. Sluoksnelis ‐ tai medžiagos storis, kuriame menamai vyksta stacionarus šilumos perdavimas. Laiko žingsnis, kuriuo temperatūra šuoliuoja per sluoksnelius, ir temperatūrinis laidis, kuris išreiškia temperatūros suvienodejimo sparta, tai dar du parametrai, darantys poveiki skaičiavimo tikslumui. Visu šiu parametru derinys išreiškiamas Furje kriterijumi. Atlikti tyrimai parode, kad sluoksnelius racionalu sudalinti vienodomis temperatūrinemis pralaidomis, o sluoksneliu aušimo (šilimo) greičio ir pagreičio vertes daro svaria itaka skaičiavimo tikslumui. First Published Online: 24 Jun 2011 Reikšminiai žodžiai: nestacionarus šilumos perdavimas, Furje kriterijus, aušimo (šilimo) greitis, aušimo (šilimo) pagreitis, salyginis sluoksnio storis, temperatūrine pralaida, karšta dežehttps://journals.vgtu.lt/index.php/JCEM/article/view/5951unsteady heat transferFourier numbercooling (heating) speedcooling (heating) accelerationconditional layerthermal diffusion
spellingShingle Darius Pupeikis
Vytautas Stankevičius
Arūnas Burlingis
The effect of the Fourier number on calculation of an unsteady heat transfer of building walls
Journal of Civil Engineering and Management
unsteady heat transfer
Fourier number
cooling (heating) speed
cooling (heating) acceleration
conditional layer
thermal diffusion
title The effect of the Fourier number on calculation of an unsteady heat transfer of building walls
title_full The effect of the Fourier number on calculation of an unsteady heat transfer of building walls
title_fullStr The effect of the Fourier number on calculation of an unsteady heat transfer of building walls
title_full_unstemmed The effect of the Fourier number on calculation of an unsteady heat transfer of building walls
title_short The effect of the Fourier number on calculation of an unsteady heat transfer of building walls
title_sort effect of the fourier number on calculation of an unsteady heat transfer of building walls
topic unsteady heat transfer
Fourier number
cooling (heating) speed
cooling (heating) acceleration
conditional layer
thermal diffusion
url https://journals.vgtu.lt/index.php/JCEM/article/view/5951
work_keys_str_mv AT dariuspupeikis theeffectofthefouriernumberoncalculationofanunsteadyheattransferofbuildingwalls
AT vytautasstankevicius theeffectofthefouriernumberoncalculationofanunsteadyheattransferofbuildingwalls
AT arunasburlingis theeffectofthefouriernumberoncalculationofanunsteadyheattransferofbuildingwalls
AT dariuspupeikis effectofthefouriernumberoncalculationofanunsteadyheattransferofbuildingwalls
AT vytautasstankevicius effectofthefouriernumberoncalculationofanunsteadyheattransferofbuildingwalls
AT arunasburlingis effectofthefouriernumberoncalculationofanunsteadyheattransferofbuildingwalls