A Miniaturized Metamaterial-Based Dual-Band 4×4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications

This paper introduces an innovative <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> dual-band Butler matrix (BM) characterized by compactness and an enhanced frequency ratio (K). The design employs meandered lines and an interdi...

Full description

Bibliographic Details
Main Authors: Abdulkadir Bello Shallah, Farid Zubir, Mohamad Kamal A. Rahim, Noorlindawaty Md. Jizat, Abdul Basit, Maher Assaad, Huda A. Majid
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10452356/
_version_ 1797268053342289920
author Abdulkadir Bello Shallah
Farid Zubir
Mohamad Kamal A. Rahim
Noorlindawaty Md. Jizat
Abdul Basit
Maher Assaad
Huda A. Majid
author_facet Abdulkadir Bello Shallah
Farid Zubir
Mohamad Kamal A. Rahim
Noorlindawaty Md. Jizat
Abdul Basit
Maher Assaad
Huda A. Majid
author_sort Abdulkadir Bello Shallah
collection DOAJ
description This paper introduces an innovative <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> dual-band Butler matrix (BM) characterized by compactness and an enhanced frequency ratio (K). The design employs meandered lines and an interdigital capacitor (IDC) unit-cell-based composite right/left-handed transmission-line (CRLH-TL) metamaterial (MTM) structure. The BM integrates compact dual-band 3 dB branch-line couplers (BLC), a 0 dB crossover, and dual-band &#x00B1;45&#x00B0; phase shifters on a single Rogers RT5880 substrate having relative permittivity <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}$ </tex-math></inline-formula> of 2.2 and thickness <inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula> of 0.787 mm. Simulations and measurement results demonstrate reflection and isolation coefficients exceeding &#x2212;20 dB at all ports, with obtained insertion loss of &#x2212;6&#x00B1;3 dB over the 0.7 GHz and 3.5 GHz frequency bands. The achieved output phase differences of &#x00B1;45&#x00B0;, &#x00B1;135&#x00B0;, &#x00B1;135&#x00B0;, and &#x00B1;45&#x00B0; at the designed frequencies indicate a maximum average phase tolerance of &#x00B1;4.5&#x00B0; concerning the ideal values. Importantly, the BM&#x2019;s overall dimensions are 143 mm <inline-formula> <tex-math notation="LaTeX">$ \times 186$ </tex-math></inline-formula> mm, resulting in an impressive 78&#x0025; size reduction compared to traditional T-shaped BM designs. The proposed configuration is designed and simulated using CST Microwave Studio, with the agreement between simulated and measured parameters highlighting design reliability and effectiveness. Additionally, a performance evaluation comparing the proposed BM with existing circuits reveals its suitability for sub-6 GHz 5G dual-band antenna array beamforming networks (BFN) due to its compact size and improved band ratio.
first_indexed 2024-03-07T14:32:33Z
format Article
id doaj.art-fbebd5f7a52e46b89680fb6d39a3eac4
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-25T01:26:22Z
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-fbebd5f7a52e46b89680fb6d39a3eac42024-03-09T00:00:16ZengIEEEIEEE Access2169-35362024-01-0112323203233310.1109/ACCESS.2024.337102710452356A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G ApplicationsAbdulkadir Bello Shallah0https://orcid.org/0000-0003-4643-1482Farid Zubir1https://orcid.org/0000-0003-4643-1482Mohamad Kamal A. Rahim2https://orcid.org/0000-0002-5488-9277Noorlindawaty Md. Jizat3https://orcid.org/0000-0003-4643-1482Abdul Basit4https://orcid.org/0000-0003-2864-2809Maher Assaad5https://orcid.org/0000-0002-1584-8747Huda A. Majid6Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, MalaysiaWireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, MalaysiaDepartment of Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, MalaysiaFaculty of Engineering, Multimedia University, Cyberjaya, Selangor, MalaysiaSchool of Information Science and Engineering, NingboTech University, Ningbo, ChinaDepartment of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman, United Arab EmiratesFaculty of Engineering Technology, Pagoh Higher Education Hub, Universiti Tun Hussein Onn Malaysia, Pagoh, Johor, MalaysiaThis paper introduces an innovative <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> dual-band Butler matrix (BM) characterized by compactness and an enhanced frequency ratio (K). The design employs meandered lines and an interdigital capacitor (IDC) unit-cell-based composite right/left-handed transmission-line (CRLH-TL) metamaterial (MTM) structure. The BM integrates compact dual-band 3 dB branch-line couplers (BLC), a 0 dB crossover, and dual-band &#x00B1;45&#x00B0; phase shifters on a single Rogers RT5880 substrate having relative permittivity <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}$ </tex-math></inline-formula> of 2.2 and thickness <inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula> of 0.787 mm. Simulations and measurement results demonstrate reflection and isolation coefficients exceeding &#x2212;20 dB at all ports, with obtained insertion loss of &#x2212;6&#x00B1;3 dB over the 0.7 GHz and 3.5 GHz frequency bands. The achieved output phase differences of &#x00B1;45&#x00B0;, &#x00B1;135&#x00B0;, &#x00B1;135&#x00B0;, and &#x00B1;45&#x00B0; at the designed frequencies indicate a maximum average phase tolerance of &#x00B1;4.5&#x00B0; concerning the ideal values. Importantly, the BM&#x2019;s overall dimensions are 143 mm <inline-formula> <tex-math notation="LaTeX">$ \times 186$ </tex-math></inline-formula> mm, resulting in an impressive 78&#x0025; size reduction compared to traditional T-shaped BM designs. The proposed configuration is designed and simulated using CST Microwave Studio, with the agreement between simulated and measured parameters highlighting design reliability and effectiveness. Additionally, a performance evaluation comparing the proposed BM with existing circuits reveals its suitability for sub-6 GHz 5G dual-band antenna array beamforming networks (BFN) due to its compact size and improved band ratio.https://ieeexplore.ieee.org/document/10452356/Branch-line couplerbutler matrixcomposite right/left-handedcrossoverfrequency ratiometamaterials
spellingShingle Abdulkadir Bello Shallah
Farid Zubir
Mohamad Kamal A. Rahim
Noorlindawaty Md. Jizat
Abdul Basit
Maher Assaad
Huda A. Majid
A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications
IEEE Access
Branch-line coupler
butler matrix
composite right/left-handed
crossover
frequency ratio
metamaterials
title A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications
title_full A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications
title_fullStr A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications
title_full_unstemmed A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications
title_short A Miniaturized Metamaterial-Based Dual-Band 4&#x00D7;4 Butler Matrix With Enhanced Frequency Ratio for Sub-6 GHz 5G Applications
title_sort miniaturized metamaterial based dual band 4 x00d7 4 butler matrix with enhanced frequency ratio for sub 6 ghz 5g applications
topic Branch-line coupler
butler matrix
composite right/left-handed
crossover
frequency ratio
metamaterials
url https://ieeexplore.ieee.org/document/10452356/
work_keys_str_mv AT abdulkadirbelloshallah aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT faridzubir aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT mohamadkamalarahim aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT noorlindawatymdjizat aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT abdulbasit aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT maherassaad aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT hudaamajid aminiaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT abdulkadirbelloshallah miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT faridzubir miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT mohamadkamalarahim miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT noorlindawatymdjizat miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT abdulbasit miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT maherassaad miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications
AT hudaamajid miniaturizedmetamaterialbaseddualband4x00d74butlermatrixwithenhancedfrequencyratioforsub6ghz5gapplications