A mapping method for anomaly detection in a localized population of structures

Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditi...

Full description

Bibliographic Details
Main Authors: Weijiang Lin, Keith Worden, Andrew E. Maguire, Elizabeth J. Cross
Format: Article
Language:English
Published: Cambridge University Press 2022-01-01
Series:Data-Centric Engineering
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2632673622000259/type/journal_article
Description
Summary:Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly detection methods, because most current methods are designed for individual structures, that is, detecting anomalous behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing data across a population of structures and capturing the interactions between structures. This paper proposes a population-based anomaly detection method, specifically for a localized population of structures, which accounts for the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The method may also be useful for other tasks such as wind power and turbine load modeling.
ISSN:2632-6736