Structure and Performance of All-Green Electrospun PHB-Based Membrane Fibrous Biomaterials Modified with Hemin

This work addresses the challenges concerning the development of “all-green” high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization....

Full description

Bibliographic Details
Main Authors: Polina M. Tyubaeva, Ivetta A. Varyan, Alexey V. Krivandin, Olga V. Shatalova, Anatoly A. Olkhov, Anatoly A. Popov, Huaizhong Xu, Olga V. Arzhakova
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/13/5/478
Description
Summary:This work addresses the challenges concerning the development of “all-green” high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%). Structure and performance of the resultant {HB/Hmi membranes were studied by diverse physicochemical methods, including differential scanning calorimetry, X-ray analysis, scanning electron microscopy, etc. Modification of the PHB fibrous membranes with Hmi allows control over their quality, supramolecular structure, morphology, and surface wettability. As a result of this modification, air and liquid permeability of the modified electrospun materials markedly increases. The proposed approach provides preparation of high-performance all-green membranes with tailored structure and performance for diverse practical applications, including wound healing, comfort textiles, facial protective masks, tissue engineering, water and air purification, etc.
ISSN:2077-0375