Existence result for hemivariational inequality involving p(x)-Laplacian

In this paper we study the nonlinear elliptic problem with \(p(x)\)-Laplacian (hemivariational inequality).We prove the existence of a nontrivial solution. Our approach is based on critical point theory for locally Lipschitz functionals due to Chang [J. Math. Anal. Appl. 80 (1981), 102–129].

Bibliographic Details
Main Author: Sylwia Barnaś
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2012-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol32/3/art/opuscula_math_3230.pdf
_version_ 1818950427512668160
author Sylwia Barnaś
author_facet Sylwia Barnaś
author_sort Sylwia Barnaś
collection DOAJ
description In this paper we study the nonlinear elliptic problem with \(p(x)\)-Laplacian (hemivariational inequality).We prove the existence of a nontrivial solution. Our approach is based on critical point theory for locally Lipschitz functionals due to Chang [J. Math. Anal. Appl. 80 (1981), 102–129].
first_indexed 2024-12-20T09:18:25Z
format Article
id doaj.art-fc1892a5ec9646ae8e2f4f1d31d88822
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-20T09:18:25Z
publishDate 2012-01-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-fc1892a5ec9646ae8e2f4f1d31d888222022-12-21T19:45:21ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742012-01-01323439454http://dx.doi.org/10.7494/OpMath.2012.32.3.4393230Existence result for hemivariational inequality involving p(x)-LaplacianSylwia Barnaś0Cracow University of Technology, Institute of Mathematics, ul. Warszawska 24 31-155 Kraków, PolandIn this paper we study the nonlinear elliptic problem with \(p(x)\)-Laplacian (hemivariational inequality).We prove the existence of a nontrivial solution. Our approach is based on critical point theory for locally Lipschitz functionals due to Chang [J. Math. Anal. Appl. 80 (1981), 102–129].http://www.opuscula.agh.edu.pl/vol32/3/art/opuscula_math_3230.pdf\(p(x)\)-LaplacianPalais-Smale conditionmountain pass theoremvariable exponent Sobolev space
spellingShingle Sylwia Barnaś
Existence result for hemivariational inequality involving p(x)-Laplacian
Opuscula Mathematica
\(p(x)\)-Laplacian
Palais-Smale condition
mountain pass theorem
variable exponent Sobolev space
title Existence result for hemivariational inequality involving p(x)-Laplacian
title_full Existence result for hemivariational inequality involving p(x)-Laplacian
title_fullStr Existence result for hemivariational inequality involving p(x)-Laplacian
title_full_unstemmed Existence result for hemivariational inequality involving p(x)-Laplacian
title_short Existence result for hemivariational inequality involving p(x)-Laplacian
title_sort existence result for hemivariational inequality involving p x laplacian
topic \(p(x)\)-Laplacian
Palais-Smale condition
mountain pass theorem
variable exponent Sobolev space
url http://www.opuscula.agh.edu.pl/vol32/3/art/opuscula_math_3230.pdf
work_keys_str_mv AT sylwiabarnas existenceresultforhemivariationalinequalityinvolvingpxlaplacian