Right Quadruple Convexity of Complements

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> be a family of sets in <inline-formula><math xml...

Full description

Bibliographic Details
Main Authors: Xuemei He, Liping Yuan, Tudor Zamfirescu
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/1/84
_version_ 1797625364634140672
author Xuemei He
Liping Yuan
Tudor Zamfirescu
author_facet Xuemei He
Liping Yuan
Tudor Zamfirescu
author_sort Xuemei He
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> be a family of sets in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula> (always <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>). A set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>⊂</mo><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></mrow></semantics></math></inline-formula> is called <i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula>-convex</i>, if for any pair of distinct points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></mrow></semantics></math></inline-formula>, there is a set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>∈</mo><mi mathvariant="script">F</mi></mrow></semantics></math></inline-formula>, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>F</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>⊂</mo><mi>M</mi></mrow></semantics></math></inline-formula>. A set of four points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>{</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow><mo>⊂</mo><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></mrow></semantics></math></inline-formula> is called a <i>rectangular quadruple</i>, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>conv</mi><mo>{</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a non-degenerate rectangle. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> is the family of all rectangular quadruples, then we obtain the <i>right quadruple convexity</i>, abbreviated as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>q</mi></mrow></semantics></math></inline-formula>-<i>convexity</i>. In this paper we focus on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>q</mi></mrow></semantics></math></inline-formula>-convexity of complements, taken in most cases in balls or parallelepipeds.
first_indexed 2024-03-11T09:55:31Z
format Article
id doaj.art-fc19ee3e2ccb41cba1e4e3a763463c2f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T09:55:31Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-fc19ee3e2ccb41cba1e4e3a763463c2f2023-11-16T15:53:11ZengMDPI AGMathematics2227-73902022-12-011118410.3390/math11010084Right Quadruple Convexity of ComplementsXuemei He0Liping Yuan1Tudor Zamfirescu2School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, ChinaSchool of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, ChinaSchool of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> be a family of sets in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula> (always <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>). A set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>⊂</mo><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></mrow></semantics></math></inline-formula> is called <i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula>-convex</i>, if for any pair of distinct points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></mrow></semantics></math></inline-formula>, there is a set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>∈</mo><mi mathvariant="script">F</mi></mrow></semantics></math></inline-formula>, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>F</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>⊂</mo><mi>M</mi></mrow></semantics></math></inline-formula>. A set of four points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>{</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow><mo>⊂</mo><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></mrow></semantics></math></inline-formula> is called a <i>rectangular quadruple</i>, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>conv</mi><mo>{</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a non-degenerate rectangle. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> is the family of all rectangular quadruples, then we obtain the <i>right quadruple convexity</i>, abbreviated as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>q</mi></mrow></semantics></math></inline-formula>-<i>convexity</i>. In this paper we focus on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>q</mi></mrow></semantics></math></inline-formula>-convexity of complements, taken in most cases in balls or parallelepipeds.https://www.mdpi.com/2227-7390/11/1/84rectangular quadruplerq-convexitycomplements
spellingShingle Xuemei He
Liping Yuan
Tudor Zamfirescu
Right Quadruple Convexity of Complements
Mathematics
rectangular quadruple
rq-convexity
complements
title Right Quadruple Convexity of Complements
title_full Right Quadruple Convexity of Complements
title_fullStr Right Quadruple Convexity of Complements
title_full_unstemmed Right Quadruple Convexity of Complements
title_short Right Quadruple Convexity of Complements
title_sort right quadruple convexity of complements
topic rectangular quadruple
rq-convexity
complements
url https://www.mdpi.com/2227-7390/11/1/84
work_keys_str_mv AT xuemeihe rightquadrupleconvexityofcomplements
AT lipingyuan rightquadrupleconvexityofcomplements
AT tudorzamfirescu rightquadrupleconvexityofcomplements