Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors

Tin diselenide (SnSe<sub>2</sub>) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detectin...

Full description

Bibliographic Details
Main Authors: Gianluca D'Olimpio, Daniel Farias, Chia-Nung Kuo, Luca Ottaviano, Chin Shan Lue, Danil W. Boukhvalov, Antonio Politano
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/3/1154
_version_ 1797486536408694784
author Gianluca D'Olimpio
Daniel Farias
Chia-Nung Kuo
Luca Ottaviano
Chin Shan Lue
Danil W. Boukhvalov
Antonio Politano
author_facet Gianluca D'Olimpio
Daniel Farias
Chia-Nung Kuo
Luca Ottaviano
Chin Shan Lue
Danil W. Boukhvalov
Antonio Politano
author_sort Gianluca D'Olimpio
collection DOAJ
description Tin diselenide (SnSe<sub>2</sub>) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe<sub>2</sub> surface towards H<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>S, NH<sub>3</sub>, and NO<sub>2</sub> analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe<sub>2</sub>. The formation of a sub-nanometric SnO<sub>2</sub> skin over the SnSe<sub>2</sub> surface (self-assembled SnO<sub>2</sub>/SnSe<sub>2</sub> heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO<sub>2</sub> and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO<sub>2</sub>/SnSe<sub>2</sub> heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]<sup>−1</sup> for H<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, and NO<sub>2,</sub> respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, and NO<sub>2,</sub> respectively. Furthermore, SnSe<sub>2</sub>-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range.
first_indexed 2024-03-09T23:35:38Z
format Article
id doaj.art-fc1b193376714c80a01d2d1775c0e3d5
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T23:35:38Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-fc1b193376714c80a01d2d1775c0e3d52023-11-23T17:03:10ZengMDPI AGMaterials1996-19442022-02-01153115410.3390/ma15031154Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical SensorsGianluca D'Olimpio0Daniel Farias1Chia-Nung Kuo2Luca Ottaviano3Chin Shan Lue4Danil W. Boukhvalov5Antonio Politano6Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, ItalyDepartamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, SpainDepartment of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, TaiwanDepartment of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, ItalyDepartment of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, TaiwanCollege of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, ChinaDepartment of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, ItalyTin diselenide (SnSe<sub>2</sub>) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe<sub>2</sub> surface towards H<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>S, NH<sub>3</sub>, and NO<sub>2</sub> analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe<sub>2</sub>. The formation of a sub-nanometric SnO<sub>2</sub> skin over the SnSe<sub>2</sub> surface (self-assembled SnO<sub>2</sub>/SnSe<sub>2</sub> heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO<sub>2</sub> and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO<sub>2</sub>/SnSe<sub>2</sub> heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]<sup>−1</sup> for H<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, and NO<sub>2,</sub> respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, and NO<sub>2,</sub> respectively. Furthermore, SnSe<sub>2</sub>-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range.https://www.mdpi.com/1996-1944/15/3/1154van der Waals semiconductorsgas sensingtin diselenidedensity functional theory
spellingShingle Gianluca D'Olimpio
Daniel Farias
Chia-Nung Kuo
Luca Ottaviano
Chin Shan Lue
Danil W. Boukhvalov
Antonio Politano
Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
Materials
van der Waals semiconductors
gas sensing
tin diselenide
density functional theory
title Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
title_full Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
title_fullStr Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
title_full_unstemmed Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
title_short Tin Diselenide (SnSe<sub>2</sub>) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
title_sort tin diselenide snse sub 2 sub van der waals semiconductor surface chemical reactivity ambient stability chemical and optical sensors
topic van der Waals semiconductors
gas sensing
tin diselenide
density functional theory
url https://www.mdpi.com/1996-1944/15/3/1154
work_keys_str_mv AT gianlucadolimpio tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors
AT danielfarias tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors
AT chianungkuo tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors
AT lucaottaviano tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors
AT chinshanlue tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors
AT danilwboukhvalov tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors
AT antoniopolitano tindiselenidesnsesub2subvanderwaalssemiconductorsurfacechemicalreactivityambientstabilitychemicalandopticalsensors