The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells

The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction...

Full description

Bibliographic Details
Main Authors: Pablo Morgado-Cáceres, Gianella Liabeuf, Ximena Calle, Lautaro Briones, Jaime A. Riquelme, Roberto Bravo-Sagua, Valentina Parra
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Cell and Developmental Biology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcell.2022.946678/full
_version_ 1828154035326156800
author Pablo Morgado-Cáceres
Pablo Morgado-Cáceres
Pablo Morgado-Cáceres
Gianella Liabeuf
Gianella Liabeuf
Gianella Liabeuf
Ximena Calle
Ximena Calle
Lautaro Briones
Lautaro Briones
Lautaro Briones
Jaime A. Riquelme
Jaime A. Riquelme
Roberto Bravo-Sagua
Roberto Bravo-Sagua
Roberto Bravo-Sagua
Valentina Parra
Valentina Parra
Valentina Parra
author_facet Pablo Morgado-Cáceres
Pablo Morgado-Cáceres
Pablo Morgado-Cáceres
Gianella Liabeuf
Gianella Liabeuf
Gianella Liabeuf
Ximena Calle
Ximena Calle
Lautaro Briones
Lautaro Briones
Lautaro Briones
Jaime A. Riquelme
Jaime A. Riquelme
Roberto Bravo-Sagua
Roberto Bravo-Sagua
Roberto Bravo-Sagua
Valentina Parra
Valentina Parra
Valentina Parra
author_sort Pablo Morgado-Cáceres
collection DOAJ
description The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.
first_indexed 2024-04-11T22:34:26Z
format Article
id doaj.art-fc237bd88628485b9e00adb58a1f4c26
institution Directory Open Access Journal
issn 2296-634X
language English
last_indexed 2024-04-11T22:34:26Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cell and Developmental Biology
spelling doaj.art-fc237bd88628485b9e00adb58a1f4c262022-12-22T03:59:16ZengFrontiers Media S.A.Frontiers in Cell and Developmental Biology2296-634X2022-08-011010.3389/fcell.2022.946678946678The aging of ER-mitochondria communication: A journey from undifferentiated to aged cellsPablo Morgado-Cáceres0Pablo Morgado-Cáceres1Pablo Morgado-Cáceres2Gianella Liabeuf3Gianella Liabeuf4Gianella Liabeuf5Ximena Calle6Ximena Calle7Lautaro Briones8Lautaro Briones9Lautaro Briones10Jaime A. Riquelme11Jaime A. Riquelme12Roberto Bravo-Sagua13Roberto Bravo-Sagua14Roberto Bravo-Sagua15Valentina Parra16Valentina Parra17Valentina Parra18Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileDepartamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, ChileCenter for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, ChileAdvanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileLaboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileFacultad de Salud y Ciencias Sociales, Escuela de Nutrición y Dietética, Universidad de las Américas, Santiago, ChileAdvanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileDepartamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, ChileAdvanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileLaboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileDepartamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, ChileAdvanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileDepartamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, ChileAdvanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileLaboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileRed de Investigación en Envejecimiento Saludable, Consorcio de Universidades del Estado de Chile, Santiago, ChileAdvanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, ChileDepartamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, ChileRed para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago, ChileThe complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.https://www.frontiersin.org/articles/10.3389/fcell.2022.946678/fullendoplasmic reticulummitochondriaagingcellular diffentiationchronic diseases
spellingShingle Pablo Morgado-Cáceres
Pablo Morgado-Cáceres
Pablo Morgado-Cáceres
Gianella Liabeuf
Gianella Liabeuf
Gianella Liabeuf
Ximena Calle
Ximena Calle
Lautaro Briones
Lautaro Briones
Lautaro Briones
Jaime A. Riquelme
Jaime A. Riquelme
Roberto Bravo-Sagua
Roberto Bravo-Sagua
Roberto Bravo-Sagua
Valentina Parra
Valentina Parra
Valentina Parra
The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells
Frontiers in Cell and Developmental Biology
endoplasmic reticulum
mitochondria
aging
cellular diffentiation
chronic diseases
title The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells
title_full The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells
title_fullStr The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells
title_full_unstemmed The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells
title_short The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells
title_sort aging of er mitochondria communication a journey from undifferentiated to aged cells
topic endoplasmic reticulum
mitochondria
aging
cellular diffentiation
chronic diseases
url https://www.frontiersin.org/articles/10.3389/fcell.2022.946678/full
work_keys_str_mv AT pablomorgadocaceres theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT pablomorgadocaceres theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT pablomorgadocaceres theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT gianellaliabeuf theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT gianellaliabeuf theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT gianellaliabeuf theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT ximenacalle theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT ximenacalle theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT lautarobriones theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT lautarobriones theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT lautarobriones theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT jaimeariquelme theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT jaimeariquelme theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT robertobravosagua theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT robertobravosagua theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT robertobravosagua theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT valentinaparra theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT valentinaparra theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT valentinaparra theagingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT pablomorgadocaceres agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT pablomorgadocaceres agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT pablomorgadocaceres agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT gianellaliabeuf agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT gianellaliabeuf agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT gianellaliabeuf agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT ximenacalle agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT ximenacalle agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT lautarobriones agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT lautarobriones agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT lautarobriones agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT jaimeariquelme agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT jaimeariquelme agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT robertobravosagua agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT robertobravosagua agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT robertobravosagua agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT valentinaparra agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT valentinaparra agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells
AT valentinaparra agingofermitochondriacommunicationajourneyfromundifferentiatedtoagedcells