Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients
We consider a Kolmogorov-Fokker-Planck operator of the kind: \[ \mathcal{L}u=\sum_{i,j=1}^{q}a_{ij}\left( t\right) \partial_{x_{i}x_{j}} ^{2}u+\sum_{k,j=1}^{N}b_{jk}x_{k}\partial_{x_{j}}u-\partial_{t}u,\qquad (x,t)\in\mathbb{R}^{N+1} \] where $\left\{ a_{ij}\left(t\right) \right\} _{i,j=1}^{q}$ is a...
Main Authors: | Marco Bramanti, Sergio Polidoro |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-10-01
|
Series: | Mathematics in Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/mine.2020035/fulltext.html |
Similar Items
-
On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients
by: Prashanta Garain, et al.
Published: (2023-06-01) -
Some global Sobolev inequalities related to Kolmogorov-type operators
by: Giulio Tralli
Published: (2020-03-01) -
Application of the Fokker-Planck Kolmogorov equation to determining the mean value of nucleons generated by the direct ejection process
by: Soloviev Igor A., et al.
Published: (2019-01-01) -
Nonlinear Fokker-Planck Equation in the Model of Asset Returns
by: Alexander Shapovalov, et al.
Published: (2008-04-01) -
Sobre la estabilidad de campos Fokker-Planck integrables On the stability of integrables Fokker-Planck fields
by: R Quintero, et al.
Published: (2007-11-01)