Electrochemical harvesting of Chlorella sp.: Electrolyte concentration and interelectrode distance

Two modes of electrochemical harvesting for microalgae were investigated in the current work. A sacrificial anode (aluminum) was used to study the electrocoagulation-flotation process, and a nonsacrificial anode (graphite) was used to investigate the electroflotation process. The study inspected the...

Full description

Bibliographic Details
Main Authors: Al-Yaqoobi Atheer M., Al-Rikabey Muna N.
Format: Article
Language:English
Published: Association of the Chemical Engineers of Serbia 2023-01-01
Series:Chemical Industry and Chemical Engineering Quarterly
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1451-9372/2023/1451-93722200010A.pdf
Description
Summary:Two modes of electrochemical harvesting for microalgae were investigated in the current work. A sacrificial anode (aluminum) was used to study the electrocoagulation-flotation process, and a nonsacrificial anode (graphite) was used to investigate the electroflotation process. The study inspected the effect of chloride ions concentration and the interelectrode distance on the performance of the electrochemical harvesting processes. The results demonstrated that both electrodes achieved maximum harvesting efficiency with a 2 g/L NaCl concentration. Interestingly, by increasing the NaCl concentration to 5 g/L, the harvesting efficiency reduced dramatically to its lowest value. Generally, the energy consumption decreased with increasing of NaCl concentration. Moreover, the energy consumption achieved with aluminum anodes is lower than that achieved with graphite. However, by increasing the gap between the electrodes from 15 mm to 30 mm, the time required to achieve the maximum efficiency doubled, and energy consumption increased consequently.
ISSN:1451-9372
2217-7434