Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function

Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has b...

Full description

Bibliographic Details
Main Authors: Qing Li, Haihong Yang, Shuimiao Song, Jie Liu, Ziyuan Wang, Jing Wang
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/11/18/2752
Description
Summary:Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
ISSN:2304-8158