Transverse-mode coupling effects in scanning cavity microscopy

Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially...

Full description

Bibliographic Details
Main Authors: Julia Benedikter, Thea Moosmayer, Matthias Mader, Thomas Hümmer, David Hunger
Format: Article
Language:English
Published: IOP Publishing 2019-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab49b4
_version_ 1797750461502062592
author Julia Benedikter
Thea Moosmayer
Matthias Mader
Thomas Hümmer
David Hunger
author_facet Julia Benedikter
Thea Moosmayer
Matthias Mader
Thomas Hümmer
David Hunger
author_sort Julia Benedikter
collection DOAJ
description Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic background patterns with high spatial frequency. We show in detailed measurements that the localized structures originate from resonant transverse-mode coupling and arise from the topography of the planar mirror surface, in particular its local curvature and gradient. We further examine the background patterns and find that they derive from non-resonant mode coupling, and we attribute it to the micro roughness of the mirror. Our measurements and analysis elucidate the impact of imperfect mirrors and reveal the influence of their microscopic topography. This is crucial for the interpretation of scanning cavity images, and could provide relevant insight for precision applications such as gravitational wave detectors, laser gyroscopes, and reference cavities.
first_indexed 2024-03-12T16:33:03Z
format Article
id doaj.art-fc71e467b06243ac9ed3cdcfde9a59bf
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:33:03Z
publishDate 2019-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-fc71e467b06243ac9ed3cdcfde9a59bf2023-08-08T15:24:43ZengIOP PublishingNew Journal of Physics1367-26302019-01-01211010302910.1088/1367-2630/ab49b4Transverse-mode coupling effects in scanning cavity microscopyJulia Benedikter0Thea Moosmayer1Matthias Mader2Thomas Hümmer3David Hunger4https://orcid.org/0000-0001-6156-6145Fakultät für Physik, Ludwig-Maximilians-Universität , Schellingstraße 4, D-80799 München, Germany; Karlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, GermanyKarlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, GermanyFakultät für Physik, Ludwig-Maximilians-Universität , Schellingstraße 4, D-80799 München, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, GermanyFakultät für Physik, Ludwig-Maximilians-Universität , Schellingstraße 4, D-80799 München, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, GermanyKarlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, GermanyTunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic background patterns with high spatial frequency. We show in detailed measurements that the localized structures originate from resonant transverse-mode coupling and arise from the topography of the planar mirror surface, in particular its local curvature and gradient. We further examine the background patterns and find that they derive from non-resonant mode coupling, and we attribute it to the micro roughness of the mirror. Our measurements and analysis elucidate the impact of imperfect mirrors and reveal the influence of their microscopic topography. This is crucial for the interpretation of scanning cavity images, and could provide relevant insight for precision applications such as gravitational wave detectors, laser gyroscopes, and reference cavities.https://doi.org/10.1088/1367-2630/ab49b4optical microcavitiesFabry–Perot resonatorsmode mixingfiber cavity
spellingShingle Julia Benedikter
Thea Moosmayer
Matthias Mader
Thomas Hümmer
David Hunger
Transverse-mode coupling effects in scanning cavity microscopy
New Journal of Physics
optical microcavities
Fabry–Perot resonators
mode mixing
fiber cavity
title Transverse-mode coupling effects in scanning cavity microscopy
title_full Transverse-mode coupling effects in scanning cavity microscopy
title_fullStr Transverse-mode coupling effects in scanning cavity microscopy
title_full_unstemmed Transverse-mode coupling effects in scanning cavity microscopy
title_short Transverse-mode coupling effects in scanning cavity microscopy
title_sort transverse mode coupling effects in scanning cavity microscopy
topic optical microcavities
Fabry–Perot resonators
mode mixing
fiber cavity
url https://doi.org/10.1088/1367-2630/ab49b4
work_keys_str_mv AT juliabenedikter transversemodecouplingeffectsinscanningcavitymicroscopy
AT theamoosmayer transversemodecouplingeffectsinscanningcavitymicroscopy
AT matthiasmader transversemodecouplingeffectsinscanningcavitymicroscopy
AT thomashummer transversemodecouplingeffectsinscanningcavitymicroscopy
AT davidhunger transversemodecouplingeffectsinscanningcavitymicroscopy