Transverse-mode coupling effects in scanning cavity microscopy
Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2019-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/ab49b4 |
_version_ | 1797750461502062592 |
---|---|
author | Julia Benedikter Thea Moosmayer Matthias Mader Thomas Hümmer David Hunger |
author_facet | Julia Benedikter Thea Moosmayer Matthias Mader Thomas Hümmer David Hunger |
author_sort | Julia Benedikter |
collection | DOAJ |
description | Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic background patterns with high spatial frequency. We show in detailed measurements that the localized structures originate from resonant transverse-mode coupling and arise from the topography of the planar mirror surface, in particular its local curvature and gradient. We further examine the background patterns and find that they derive from non-resonant mode coupling, and we attribute it to the micro roughness of the mirror. Our measurements and analysis elucidate the impact of imperfect mirrors and reveal the influence of their microscopic topography. This is crucial for the interpretation of scanning cavity images, and could provide relevant insight for precision applications such as gravitational wave detectors, laser gyroscopes, and reference cavities. |
first_indexed | 2024-03-12T16:33:03Z |
format | Article |
id | doaj.art-fc71e467b06243ac9ed3cdcfde9a59bf |
institution | Directory Open Access Journal |
issn | 1367-2630 |
language | English |
last_indexed | 2024-03-12T16:33:03Z |
publishDate | 2019-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | New Journal of Physics |
spelling | doaj.art-fc71e467b06243ac9ed3cdcfde9a59bf2023-08-08T15:24:43ZengIOP PublishingNew Journal of Physics1367-26302019-01-01211010302910.1088/1367-2630/ab49b4Transverse-mode coupling effects in scanning cavity microscopyJulia Benedikter0Thea Moosmayer1Matthias Mader2Thomas Hümmer3David Hunger4https://orcid.org/0000-0001-6156-6145Fakultät für Physik, Ludwig-Maximilians-Universität , Schellingstraße 4, D-80799 München, Germany; Karlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, GermanyKarlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, GermanyFakultät für Physik, Ludwig-Maximilians-Universität , Schellingstraße 4, D-80799 München, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, GermanyFakultät für Physik, Ludwig-Maximilians-Universität , Schellingstraße 4, D-80799 München, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, GermanyKarlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, GermanyTunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic background patterns with high spatial frequency. We show in detailed measurements that the localized structures originate from resonant transverse-mode coupling and arise from the topography of the planar mirror surface, in particular its local curvature and gradient. We further examine the background patterns and find that they derive from non-resonant mode coupling, and we attribute it to the micro roughness of the mirror. Our measurements and analysis elucidate the impact of imperfect mirrors and reveal the influence of their microscopic topography. This is crucial for the interpretation of scanning cavity images, and could provide relevant insight for precision applications such as gravitational wave detectors, laser gyroscopes, and reference cavities.https://doi.org/10.1088/1367-2630/ab49b4optical microcavitiesFabry–Perot resonatorsmode mixingfiber cavity |
spellingShingle | Julia Benedikter Thea Moosmayer Matthias Mader Thomas Hümmer David Hunger Transverse-mode coupling effects in scanning cavity microscopy New Journal of Physics optical microcavities Fabry–Perot resonators mode mixing fiber cavity |
title | Transverse-mode coupling effects in scanning cavity microscopy |
title_full | Transverse-mode coupling effects in scanning cavity microscopy |
title_fullStr | Transverse-mode coupling effects in scanning cavity microscopy |
title_full_unstemmed | Transverse-mode coupling effects in scanning cavity microscopy |
title_short | Transverse-mode coupling effects in scanning cavity microscopy |
title_sort | transverse mode coupling effects in scanning cavity microscopy |
topic | optical microcavities Fabry–Perot resonators mode mixing fiber cavity |
url | https://doi.org/10.1088/1367-2630/ab49b4 |
work_keys_str_mv | AT juliabenedikter transversemodecouplingeffectsinscanningcavitymicroscopy AT theamoosmayer transversemodecouplingeffectsinscanningcavitymicroscopy AT matthiasmader transversemodecouplingeffectsinscanningcavitymicroscopy AT thomashummer transversemodecouplingeffectsinscanningcavitymicroscopy AT davidhunger transversemodecouplingeffectsinscanningcavitymicroscopy |