An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories

One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like machine learning (ML) and deep neural networks are becoming a de-facto standard. Nowa...

Full description

Bibliographic Details
Main Authors: Andrea Baroni, Artem Glukhov, Eduardo Pérez, Christian Wenger, Enrico Calore, Sebastiano Fabio Schifano, Piero Olivo, Daniele Ielmini, Cristian Zambelli
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2022.932270/full
_version_ 1818504681017573376
author Andrea Baroni
Artem Glukhov
Eduardo Pérez
Christian Wenger
Christian Wenger
Enrico Calore
Enrico Calore
Sebastiano Fabio Schifano
Sebastiano Fabio Schifano
Piero Olivo
Daniele Ielmini
Cristian Zambelli
author_facet Andrea Baroni
Artem Glukhov
Eduardo Pérez
Christian Wenger
Christian Wenger
Enrico Calore
Enrico Calore
Sebastiano Fabio Schifano
Sebastiano Fabio Schifano
Piero Olivo
Daniele Ielmini
Cristian Zambelli
author_sort Andrea Baroni
collection DOAJ
description One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like machine learning (ML) and deep neural networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency. The in-memory computing (IMC) architecture emerged as a revolutionary approach to overcome that issue. In this work, we propose an IMC architecture based on resistive switching memory (RRAM) crossbar arrays to provide a convenient primitive for matrix-vector multiplication in a single computational step. This opens massive performance improvement in the acceleration of a neural network that is frequently used in survival analysis of biomedical records, namely the DeepSurv. We explored how the synaptic weights mapping strategy and the programming algorithms developed to counter RRAM non-idealities expose a performance/energy trade-off. Finally, we discussed how this application is tailored for the IMC architecture rather than being executed on commodity systems.
first_indexed 2024-12-10T21:40:24Z
format Article
id doaj.art-fc722f8ddb564ece8c127eb70dfd8593
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-12-10T21:40:24Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-fc722f8ddb564ece8c127eb70dfd85932022-12-22T01:32:32ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2022-08-011610.3389/fnins.2022.932270932270An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memoriesAndrea Baroni0Artem Glukhov1Eduardo Pérez2Christian Wenger3Christian Wenger4Enrico Calore5Enrico Calore6Sebastiano Fabio Schifano7Sebastiano Fabio Schifano8Piero Olivo9Daniele Ielmini10Cristian Zambelli11IHP-Leibniz Institut fur Innovative Mikroelektronik, Frankfurt (Oder), GermanyDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Milano, ItalyIHP-Leibniz Institut fur Innovative Mikroelektronik, Frankfurt (Oder), GermanyIHP-Leibniz Institut fur Innovative Mikroelektronik, Frankfurt (Oder), GermanyBTU Cottbus-Senftenberg, Cottbus, GermanyDipartimento di Fisica e Scienze Della Terra, Università Degli Studi di Ferrara, Ferrara, ItalyIstituto Nazionale di Fisica Nucleare (INFN), Ferrara, ItalyIstituto Nazionale di Fisica Nucleare (INFN), Ferrara, ItalyDipartimento di Scienze Dell'Ambiente e Della Prevenzione, Università Degli Studi di Ferrara, Ferrara, ItalyDipartimento di Ingegneria, Università Degli Studi di Ferrara, Ferrara, ItalyDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Milano, ItalyDipartimento di Ingegneria, Università Degli Studi di Ferrara, Ferrara, ItalyOne of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like machine learning (ML) and deep neural networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency. The in-memory computing (IMC) architecture emerged as a revolutionary approach to overcome that issue. In this work, we propose an IMC architecture based on resistive switching memory (RRAM) crossbar arrays to provide a convenient primitive for matrix-vector multiplication in a single computational step. This opens massive performance improvement in the acceleration of a neural network that is frequently used in survival analysis of biomedical records, namely the DeepSurv. We explored how the synaptic weights mapping strategy and the programming algorithms developed to counter RRAM non-idealities expose a performance/energy trade-off. Finally, we discussed how this application is tailored for the IMC architecture rather than being executed on commodity systems.https://www.frontiersin.org/articles/10.3389/fnins.2022.932270/fullresistive RAM (RRAM)driftin-memory computing (IMC)survival analysismulti level conductance
spellingShingle Andrea Baroni
Artem Glukhov
Eduardo Pérez
Christian Wenger
Christian Wenger
Enrico Calore
Enrico Calore
Sebastiano Fabio Schifano
Sebastiano Fabio Schifano
Piero Olivo
Daniele Ielmini
Cristian Zambelli
An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
Frontiers in Neuroscience
resistive RAM (RRAM)
drift
in-memory computing (IMC)
survival analysis
multi level conductance
title An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
title_full An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
title_fullStr An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
title_full_unstemmed An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
title_short An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
title_sort energy efficient in memory computing architecture for survival data analysis based on resistive switching memories
topic resistive RAM (RRAM)
drift
in-memory computing (IMC)
survival analysis
multi level conductance
url https://www.frontiersin.org/articles/10.3389/fnins.2022.932270/full
work_keys_str_mv AT andreabaroni anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT artemglukhov anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT eduardoperez anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT christianwenger anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT christianwenger anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT enricocalore anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT enricocalore anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT sebastianofabioschifano anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT sebastianofabioschifano anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT pieroolivo anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT danieleielmini anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT cristianzambelli anenergyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT andreabaroni energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT artemglukhov energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT eduardoperez energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT christianwenger energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT christianwenger energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT enricocalore energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT enricocalore energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT sebastianofabioschifano energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT sebastianofabioschifano energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT pieroolivo energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT danieleielmini energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories
AT cristianzambelli energyefficientinmemorycomputingarchitectureforsurvivaldataanalysisbasedonresistiveswitchingmemories