Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)

Flash floods forecasting in the Mediterranean area is a major economic and societal issue. Specifically, considering karst basins, heterogeneous structure and nonlinear behaviour make the flash flood forecasting very difficult. In this context, this work proposes a methodology to estimate the co...

Full description

Bibliographic Details
Main Authors: T. Darras, F. Raynaud, V. Borrell Estupina, L. Kong-A-Siou, S. Van-Exter, B. Vayssade, A. Johannet, S. Pistre
Format: Article
Language:English
Published: Copernicus Publications 2015-06-01
Series:Proceedings of the International Association of Hydrological Sciences
Online Access:https://www.proc-iahs.net/369/43/2015/piahs-369-43-2015.pdf
_version_ 1818272073294807040
author T. Darras
T. Darras
F. Raynaud
V. Borrell Estupina
L. Kong-A-Siou
S. Van-Exter
B. Vayssade
A. Johannet
S. Pistre
author_facet T. Darras
T. Darras
F. Raynaud
V. Borrell Estupina
L. Kong-A-Siou
S. Van-Exter
B. Vayssade
A. Johannet
S. Pistre
author_sort T. Darras
collection DOAJ
description Flash floods forecasting in the Mediterranean area is a major economic and societal issue. Specifically, considering karst basins, heterogeneous structure and nonlinear behaviour make the flash flood forecasting very difficult. In this context, this work proposes a methodology to estimate the contribution from karst and non-karst components using toolbox including neural networks and various hydrological methods. The chosen case study is the flash flooding of the <i>Lez</i> river, known for his complex behaviour and huge stakes, at the gauge station of <i>Lavallette</i>, upstream of <i>Montpellier</i> (400 000 inhabitants). After application of the proposed methodology, discharge at the station of <i>Lavallette</i> is spited between hydrographs of karst flood and surface runoff, for the two events of 2014. Generalizing the method to future events will allow designing forecasting models specifically for karst and surface flood increasing by this way the reliability of the forecasts.
first_indexed 2024-12-12T21:36:16Z
format Article
id doaj.art-fc74904d55d3441aa54bf2de72cc08ac
institution Directory Open Access Journal
issn 2199-8981
2199-899X
language English
last_indexed 2024-12-12T21:36:16Z
publishDate 2015-06-01
publisher Copernicus Publications
record_format Article
series Proceedings of the International Association of Hydrological Sciences
spelling doaj.art-fc74904d55d3441aa54bf2de72cc08ac2022-12-22T00:11:11ZengCopernicus PublicationsProceedings of the International Association of Hydrological Sciences2199-89812199-899X2015-06-01369434810.5194/piahs-369-43-2015Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)T. Darras0T. Darras1F. Raynaud2V. Borrell Estupina3L. Kong-A-Siou4S. Van-Exter5B. Vayssade6A. Johannet7S. Pistre8École des mines d'Alès, 6 avenue de Clavières, 30319 Alès CEDEX, FranceHydrosciences Montpellier, Université de Montpelier II, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, FranceHydrosciences Montpellier, Université de Montpelier II, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, FranceHydrosciences Montpellier, Université de Montpelier II, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, FranceMAYANE, 173 chemin de Fescau, 34980 Montferrier-sur-Lez, FranceHydrosciences Montpellier, CNRS, Montpellier, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, FranceÉcole des mines d'Alès, 6 avenue de Clavières, 30319 Alès CEDEX, FranceÉcole des mines d'Alès, 6 avenue de Clavières, 30319 Alès CEDEX, FranceHydrosciences Montpellier, Université de Montpelier II, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, FranceFlash floods forecasting in the Mediterranean area is a major economic and societal issue. Specifically, considering karst basins, heterogeneous structure and nonlinear behaviour make the flash flood forecasting very difficult. In this context, this work proposes a methodology to estimate the contribution from karst and non-karst components using toolbox including neural networks and various hydrological methods. The chosen case study is the flash flooding of the <i>Lez</i> river, known for his complex behaviour and huge stakes, at the gauge station of <i>Lavallette</i>, upstream of <i>Montpellier</i> (400 000 inhabitants). After application of the proposed methodology, discharge at the station of <i>Lavallette</i> is spited between hydrographs of karst flood and surface runoff, for the two events of 2014. Generalizing the method to future events will allow designing forecasting models specifically for karst and surface flood increasing by this way the reliability of the forecasts.https://www.proc-iahs.net/369/43/2015/piahs-369-43-2015.pdf
spellingShingle T. Darras
T. Darras
F. Raynaud
V. Borrell Estupina
L. Kong-A-Siou
S. Van-Exter
B. Vayssade
A. Johannet
S. Pistre
Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)
Proceedings of the International Association of Hydrological Sciences
title Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)
title_full Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)
title_fullStr Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)
title_full_unstemmed Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)
title_short Neural network modeling and geochemical water analyses to understand and forecast karst and non-karst part of flash floods (case study on the <i>Lez</i> river, Southern France)
title_sort neural network modeling and geochemical water analyses to understand and forecast karst and non karst part of flash floods case study on the i lez i river southern france
url https://www.proc-iahs.net/369/43/2015/piahs-369-43-2015.pdf
work_keys_str_mv AT tdarras neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT tdarras neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT fraynaud neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT vborrellestupina neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT lkongasiou neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT svanexter neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT bvayssade neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT ajohannet neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance
AT spistre neuralnetworkmodelingandgeochemicalwateranalysestounderstandandforecastkarstandnonkarstpartofflashfloodscasestudyontheileziriversouthernfrance