Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation

Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. E...

Full description

Bibliographic Details
Main Authors: Olufisayo Ekundayo, Serestina Viriri
Format: Article
Language:English
Published: PeerJ Inc. 2021-11-01
Series:PeerJ Computer Science
Subjects:
Online Access:https://peerj.com/articles/cs-736.pdf
_version_ 1818722132457160704
author Olufisayo Ekundayo
Serestina Viriri
author_facet Olufisayo Ekundayo
Serestina Viriri
author_sort Olufisayo Ekundayo
collection DOAJ
description Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. Even the available studies on expression intensity estimation successfully assigned a nominal/regression value or classified emotion in a range of intervals. Most of the available works on facial expression intensity estimation successfully present only the emotion intensity estimation. At the same time, others proposed methods that predict emotion and its intensity in different channels. These multiclass approaches and extensions do not conform to man heuristic manner of recognising emotion and its intensity estimation. This work presents a Multilabel Convolution Neural Network (ML-CNN)-based model, which could simultaneously recognise emotion and provide ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting. In the experiments conducted on Binghampton University 3D Facial Expression (BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN’s performance based on accuracy and loss. We also carried out a comparative study of our model with some popularly used multilabel algorithms using standard multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity estimation using ordinal metrics. The model also shows appreciable and superior performance over four standard multilabel algorithms: Chain Classifier (CC), distinct Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and Multilabel ARAM (MLARAM).
first_indexed 2024-12-17T20:49:46Z
format Article
id doaj.art-fc749ed5308345939a17863f58239d1a
institution Directory Open Access Journal
issn 2376-5992
language English
last_indexed 2024-12-17T20:49:46Z
publishDate 2021-11-01
publisher PeerJ Inc.
record_format Article
series PeerJ Computer Science
spelling doaj.art-fc749ed5308345939a17863f58239d1a2022-12-21T21:33:03ZengPeerJ Inc.PeerJ Computer Science2376-59922021-11-017e73610.7717/peerj-cs.736Multilabel convolution neural network for facial expression recognition and ordinal intensity estimationOlufisayo EkundayoSerestina ViririFacial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. Even the available studies on expression intensity estimation successfully assigned a nominal/regression value or classified emotion in a range of intervals. Most of the available works on facial expression intensity estimation successfully present only the emotion intensity estimation. At the same time, others proposed methods that predict emotion and its intensity in different channels. These multiclass approaches and extensions do not conform to man heuristic manner of recognising emotion and its intensity estimation. This work presents a Multilabel Convolution Neural Network (ML-CNN)-based model, which could simultaneously recognise emotion and provide ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting. In the experiments conducted on Binghampton University 3D Facial Expression (BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN’s performance based on accuracy and loss. We also carried out a comparative study of our model with some popularly used multilabel algorithms using standard multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity estimation using ordinal metrics. The model also shows appreciable and superior performance over four standard multilabel algorithms: Chain Classifier (CC), distinct Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and Multilabel ARAM (MLARAM).https://peerj.com/articles/cs-736.pdfBinary cross-entropyFacial expression recognitionIsland lossMultilabelOrdinal intensity estimation
spellingShingle Olufisayo Ekundayo
Serestina Viriri
Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
PeerJ Computer Science
Binary cross-entropy
Facial expression recognition
Island loss
Multilabel
Ordinal intensity estimation
title Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
title_full Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
title_fullStr Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
title_full_unstemmed Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
title_short Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
title_sort multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
topic Binary cross-entropy
Facial expression recognition
Island loss
Multilabel
Ordinal intensity estimation
url https://peerj.com/articles/cs-736.pdf
work_keys_str_mv AT olufisayoekundayo multilabelconvolutionneuralnetworkforfacialexpressionrecognitionandordinalintensityestimation
AT serestinaviriri multilabelconvolutionneuralnetworkforfacialexpressionrecognitionandordinalintensityestimation