Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor

Permanent magnet synchronous motors (PMSM) are widely used in various fields of application of electric drives of industrial enterprises. For each application of the electric drive, it is necessary to accept technical requirements, such as the maximum torque of the electric motor and the fulfillment...

Full description

Bibliographic Details
Main Author: T. I. Petrov
Format: Article
Language:English
Published: Kazan State Power Engineering University 2021-07-01
Series:Известия высших учебных заведений: Проблемы энергетики
Subjects:
Online Access:https://www.energyret.ru/jour/article/view/1844
_version_ 1797759969451311104
author T. I. Petrov
author_facet T. I. Petrov
author_sort T. I. Petrov
collection DOAJ
description Permanent magnet synchronous motors (PMSM) are widely used in various fields of application of electric drives of industrial enterprises. For each application of the electric drive, it is necessary to accept technical requirements, such as the maximum torque of the electric motor and the fulfillment of the required conditions for the strength characteristics of the rotor and stator.PMSM has a number of advantages over other types of engines. Asynchronous motors have developed resource rational energy efficiency, while synchronous motors are more energy efficient without modifications. PMSM have smaller weight and size parameters, which allows them to be used in a wider field of application, for example, in household appliances, robots and many other drives.TARGET. The aim is to develop a methodology for topological complex optimization of the engine design, based on a genetic algorithm.METHODS. The genetic algorithm is more accurate than traditional analytical methods, the method used in the analysis of AC machines, takes less time than the usual trial and error design procedure based on the finite element method. The main optimization criterion is an increase in torque while maintaining the mass of the most expensive material (permanent magnets). This feature is important for the manufacture of a designed engine in production.RESULTS. A program has been written in Python, which made it possible to carry out a comprehensive topological optimization for the engine under consideration.CONCLUSION. Topological optimization based on the method of modifying the rotor design using a genetic algorithm with the additions necessary for correct operation with synchronous motors is presented.
first_indexed 2024-03-12T18:52:08Z
format Article
id doaj.art-fc7bc543e9b5436abee6aa8d76e8f6c2
institution Directory Open Access Journal
issn 1998-9903
language English
last_indexed 2024-03-12T18:52:08Z
publishDate 2021-07-01
publisher Kazan State Power Engineering University
record_format Article
series Известия высших учебных заведений: Проблемы энергетики
spelling doaj.art-fc7bc543e9b5436abee6aa8d76e8f6c22023-08-02T07:13:22ZengKazan State Power Engineering UniversityИзвестия высших учебных заведений: Проблемы энергетики1998-99032021-07-01233707910.30724/1998-9903-2021-23-3-70-79761Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotorT. I. Petrov0Kazan state power engineering universityPermanent magnet synchronous motors (PMSM) are widely used in various fields of application of electric drives of industrial enterprises. For each application of the electric drive, it is necessary to accept technical requirements, such as the maximum torque of the electric motor and the fulfillment of the required conditions for the strength characteristics of the rotor and stator.PMSM has a number of advantages over other types of engines. Asynchronous motors have developed resource rational energy efficiency, while synchronous motors are more energy efficient without modifications. PMSM have smaller weight and size parameters, which allows them to be used in a wider field of application, for example, in household appliances, robots and many other drives.TARGET. The aim is to develop a methodology for topological complex optimization of the engine design, based on a genetic algorithm.METHODS. The genetic algorithm is more accurate than traditional analytical methods, the method used in the analysis of AC machines, takes less time than the usual trial and error design procedure based on the finite element method. The main optimization criterion is an increase in torque while maintaining the mass of the most expensive material (permanent magnets). This feature is important for the manufacture of a designed engine in production.RESULTS. A program has been written in Python, which made it possible to carry out a comprehensive topological optimization for the engine under consideration.CONCLUSION. Topological optimization based on the method of modifying the rotor design using a genetic algorithm with the additions necessary for correct operation with synchronous motors is presented.https://www.energyret.ru/jour/article/view/1844topological optimizationgenetic algorithmrotor designpermanent magnetssynchronous motor
spellingShingle T. I. Petrov
Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
Известия высших учебных заведений: Проблемы энергетики
topological optimization
genetic algorithm
rotor design
permanent magnets
synchronous motor
title Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
title_full Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
title_fullStr Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
title_full_unstemmed Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
title_short Modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
title_sort modification of the genetic algorithm for comprehensive topological optimization of the synchronous motors rotor
topic topological optimization
genetic algorithm
rotor design
permanent magnets
synchronous motor
url https://www.energyret.ru/jour/article/view/1844
work_keys_str_mv AT tipetrov modificationofthegeneticalgorithmforcomprehensivetopologicaloptimizationofthesynchronousmotorsrotor