Effects of Geometrical Parameters of Internal Blown Flap and Its Optimal Design
The internal blown flap was numerically simulated. Firstly, a parameterization method was developed, which can properly describe the shape of the internal blown flap according to such geometrical parameters as flap chord length, flap deflection, height of blowing slot and its position. Then the reli...
Format: | Article |
---|---|
Language: | zho |
Published: |
EDP Sciences
2020-02-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/full_html/2020/01/jnwpu2020381p58/jnwpu2020381p58.html |
Summary: | The internal blown flap was numerically simulated. Firstly, a parameterization method was developed, which can properly describe the shape of the internal blown flap according to such geometrical parameters as flap chord length, flap deflection, height of blowing slot and its position. Then the reliability of the numerical simulation was validated through comparing the pressure distribution of the CC020-010EJ fundamental generic circulation control airfoil with the computational results and available experiment results. The effects of the geometrical parameters on the aerodynamic performance of the internal blown flap was investigated. The investigation results show that the lift coefficient increases with the increase of flap chord length and flap deflection angle and with the decrease of height of blowing slot and its front position. Lastly, a method of optimal design of the geometrical parameters of the internal blown flap was developed. The design variables include flap chord length, flap deflection, height of blowing slot and its position. The optimal design is based on maximum lift coefficient, the angle of attack of 5 degrees and the design constraint of stall angle of attack of less than 9 degrees. The optimization results show that the optimal design method can apparently raise the lift coefficient of an internal blown flap up to 1.7. |
---|---|
ISSN: | 1000-2758 2609-7125 |