Model-Free Data Mining of Families of Rotating Machinery
Machines designed to perform the same tasks using different technologies can be organized into families based on their similarities or differences. We are interested in identifying common properties and differences of such machines from raw sensor data for analysis and fault diagnostics. The usual f...
Hauptverfasser: | Elizabeth Hofer, Martin v. Mohrenschildt |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
MDPI AG
2022-03-01
|
Schriftenreihe: | Applied Sciences |
Schlagworte: | |
Online Zugang: | https://www.mdpi.com/2076-3417/12/6/3178 |
Ähnliche Einträge
Ähnliche Einträge
-
Modified Hierarchical Multiscale Dispersion Entropy and its Application to Fault Identification of Rotating Machinery
von: Fuming Zhou, et al.
Veröffentlicht: (2020-01-01) -
Application of improved bubble entropy and machine learning in the adaptive diagnosis of rotating machinery faults
von: Jiancheng Gong, et al.
Veröffentlicht: (2023-10-01) -
Joint Sparsity and Collaboration Preserving Projections for Rotating Electrical Machinery Fault Diagnosis
von: Yue Ma, et al.
Veröffentlicht: (2020-01-01) -
Related Entropy Theories Application in Condition Monitoring of Rotating Machineries
von: Liansheng Liu, et al.
Veröffentlicht: (2019-10-01) -
A Review of Early Fault Diagnosis Approaches and Their Applications in Rotating Machinery
von: Yu Wei, et al.
Veröffentlicht: (2019-04-01)