Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past?
Abstract Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites in...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-07-01
|
Series: | Ecology and Evolution |
Subjects: | |
Online Access: | https://doi.org/10.1002/ece3.6379 |
_version_ | 1818324797362274304 |
---|---|
author | Evan A. Fiorenza Katie L. Leslie Mark E. Torchin Katherine P. Maslenikov Luke Tornabene Chelsea L. Wood |
author_facet | Evan A. Fiorenza Katie L. Leslie Mark E. Torchin Katherine P. Maslenikov Luke Tornabene Chelsea L. Wood |
author_sort | Evan A. Fiorenza |
collection | DOAJ |
description | Abstract Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid‐preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid‐preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid‐preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host–parasite pairs, we found few differences between treatments, with 24 of 27 host–parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid‐preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long‐term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long‐term datasets on parasite diversity and abundance over the past century or more using fluid‐preserved specimens from natural history collections. |
first_indexed | 2024-12-13T11:34:18Z |
format | Article |
id | doaj.art-fca018d0986048dfb15fd217494c6697 |
institution | Directory Open Access Journal |
issn | 2045-7758 |
language | English |
last_indexed | 2024-12-13T11:34:18Z |
publishDate | 2020-07-01 |
publisher | Wiley |
record_format | Article |
series | Ecology and Evolution |
spelling | doaj.art-fca018d0986048dfb15fd217494c66972022-12-21T23:47:51ZengWileyEcology and Evolution2045-77582020-07-0110136449646010.1002/ece3.6379Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past?Evan A. Fiorenza0Katie L. Leslie1Mark E. Torchin2Katherine P. Maslenikov3Luke Tornabene4Chelsea L. Wood5School of Aquatic and Fishery Sciences University of Washington Seattle WA USASchool of Aquatic and Fishery Sciences University of Washington Seattle WA USASmithsonian Tropical Research Institute Panama City Republic of PanamaSchool of Aquatic and Fishery Sciences University of Washington Seattle WA USASchool of Aquatic and Fishery Sciences University of Washington Seattle WA USASchool of Aquatic and Fishery Sciences University of Washington Seattle WA USAAbstract Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid‐preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid‐preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid‐preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host–parasite pairs, we found few differences between treatments, with 24 of 27 host–parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid‐preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long‐term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long‐term datasets on parasite diversity and abundance over the past century or more using fluid‐preserved specimens from natural history collections.https://doi.org/10.1002/ece3.6379historical ecologymarine fish parasitesmuseum collectionsnatural historyparasite abundance |
spellingShingle | Evan A. Fiorenza Katie L. Leslie Mark E. Torchin Katherine P. Maslenikov Luke Tornabene Chelsea L. Wood Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past? Ecology and Evolution historical ecology marine fish parasites museum collections natural history parasite abundance |
title | Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past? |
title_full | Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past? |
title_fullStr | Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past? |
title_full_unstemmed | Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past? |
title_short | Fluid preservation causes minimal reduction of parasite detectability in fish specimens: A new approach for reconstructing parasite communities of the past? |
title_sort | fluid preservation causes minimal reduction of parasite detectability in fish specimens a new approach for reconstructing parasite communities of the past |
topic | historical ecology marine fish parasites museum collections natural history parasite abundance |
url | https://doi.org/10.1002/ece3.6379 |
work_keys_str_mv | AT evanafiorenza fluidpreservationcausesminimalreductionofparasitedetectabilityinfishspecimensanewapproachforreconstructingparasitecommunitiesofthepast AT katielleslie fluidpreservationcausesminimalreductionofparasitedetectabilityinfishspecimensanewapproachforreconstructingparasitecommunitiesofthepast AT marketorchin fluidpreservationcausesminimalreductionofparasitedetectabilityinfishspecimensanewapproachforreconstructingparasitecommunitiesofthepast AT katherinepmaslenikov fluidpreservationcausesminimalreductionofparasitedetectabilityinfishspecimensanewapproachforreconstructingparasitecommunitiesofthepast AT luketornabene fluidpreservationcausesminimalreductionofparasitedetectabilityinfishspecimensanewapproachforreconstructingparasitecommunitiesofthepast AT chelsealwood fluidpreservationcausesminimalreductionofparasitedetectabilityinfishspecimensanewapproachforreconstructingparasitecommunitiesofthepast |