Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing
Abstract Generalized frequency division multiplexing (GFDM) is one of the multicarrier modulation candidates proposed for the 5th generation of wireless networks. Among GFDM linear receivers, GFDM MMSE receiver achieves the best error performance for multipath fading channels at the cost of high num...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-01-01
|
Series: | EURASIP Journal on Wireless Communications and Networking |
Online Access: | http://link.springer.com/article/10.1186/s13638-017-1017-x |
_version_ | 1818944382064132096 |
---|---|
author | Mohammad Hadi Abbaszadeh Babak H. Khalaj Afrooz Haghbin |
author_facet | Mohammad Hadi Abbaszadeh Babak H. Khalaj Afrooz Haghbin |
author_sort | Mohammad Hadi Abbaszadeh |
collection | DOAJ |
description | Abstract Generalized frequency division multiplexing (GFDM) is one of the multicarrier modulation candidates proposed for the 5th generation of wireless networks. Among GFDM linear receivers, GFDM MMSE receiver achieves the best error performance for multipath fading channels at the cost of high numerical complexity. Hence, the combination of GFDM match filter (MF) receiver and double-side successive interference cancellation (DSIC) method is used instead. However, there is a significant gap between the error performance of GFDM MMSE and DSIC/MF receivers for the case of employing modern channel coding. Recently, we have proposed a new multicarrier scheme based on GFDM architecture called generalized orthogonal frequency division multiplexing (GOFDM). This study derives an optimized cyclic tree-structured perfect reconstruction-quadrature mirror filter (PR-QMF) bank for GOFDM transceiver and then introduces a novel method for implementation of the optimum filter bank in the frequency domain. Employing such a fast and optimum filter bank provides several advantages for GOFDM transceiver. GOFDM transmitter mitigates out-of-band spectrum leak to the level of that of GFDM. In addition, choosing an appropriate configuration of filter bank yields lower peak to average power ratio in transmit signal of GOFDM compared to that of OFDM. On the other hand, while GOFDM MMSE receiver has lower numerical complexity compared with GFDM DSIC/MF receiver, its coded bit error rate curve is close to that of GFDM MMSE receiver. The aforementioned advantages envision GOFDM as a competitive candidate to be employed in the physical layer of new wireless applications. |
first_indexed | 2024-12-20T07:42:20Z |
format | Article |
id | doaj.art-fcb65f1ed3ce4c679ac25d045a93e6d8 |
institution | Directory Open Access Journal |
issn | 1687-1499 |
language | English |
last_indexed | 2024-12-20T07:42:20Z |
publishDate | 2018-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | EURASIP Journal on Wireless Communications and Networking |
spelling | doaj.art-fcb65f1ed3ce4c679ac25d045a93e6d82022-12-21T19:48:06ZengSpringerOpenEURASIP Journal on Wireless Communications and Networking1687-14992018-01-012018111410.1186/s13638-017-1017-xOptimum low complexity filter bank for generalized orthogonal frequency division multiplexingMohammad Hadi Abbaszadeh0Babak H. Khalaj1Afrooz Haghbin2Department of Electrical Engineering, Science and Research Branch, Islamic Azad UniversityDepartment of Electrical Engineering, Sharif University of TechnologyDepartment of Electrical Engineering, Science and Research Branch, Islamic Azad UniversityAbstract Generalized frequency division multiplexing (GFDM) is one of the multicarrier modulation candidates proposed for the 5th generation of wireless networks. Among GFDM linear receivers, GFDM MMSE receiver achieves the best error performance for multipath fading channels at the cost of high numerical complexity. Hence, the combination of GFDM match filter (MF) receiver and double-side successive interference cancellation (DSIC) method is used instead. However, there is a significant gap between the error performance of GFDM MMSE and DSIC/MF receivers for the case of employing modern channel coding. Recently, we have proposed a new multicarrier scheme based on GFDM architecture called generalized orthogonal frequency division multiplexing (GOFDM). This study derives an optimized cyclic tree-structured perfect reconstruction-quadrature mirror filter (PR-QMF) bank for GOFDM transceiver and then introduces a novel method for implementation of the optimum filter bank in the frequency domain. Employing such a fast and optimum filter bank provides several advantages for GOFDM transceiver. GOFDM transmitter mitigates out-of-band spectrum leak to the level of that of GFDM. In addition, choosing an appropriate configuration of filter bank yields lower peak to average power ratio in transmit signal of GOFDM compared to that of OFDM. On the other hand, while GOFDM MMSE receiver has lower numerical complexity compared with GFDM DSIC/MF receiver, its coded bit error rate curve is close to that of GFDM MMSE receiver. The aforementioned advantages envision GOFDM as a competitive candidate to be employed in the physical layer of new wireless applications.http://link.springer.com/article/10.1186/s13638-017-1017-x |
spellingShingle | Mohammad Hadi Abbaszadeh Babak H. Khalaj Afrooz Haghbin Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing EURASIP Journal on Wireless Communications and Networking |
title | Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing |
title_full | Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing |
title_fullStr | Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing |
title_full_unstemmed | Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing |
title_short | Optimum low complexity filter bank for generalized orthogonal frequency division multiplexing |
title_sort | optimum low complexity filter bank for generalized orthogonal frequency division multiplexing |
url | http://link.springer.com/article/10.1186/s13638-017-1017-x |
work_keys_str_mv | AT mohammadhadiabbaszadeh optimumlowcomplexityfilterbankforgeneralizedorthogonalfrequencydivisionmultiplexing AT babakhkhalaj optimumlowcomplexityfilterbankforgeneralizedorthogonalfrequencydivisionmultiplexing AT afroozhaghbin optimumlowcomplexityfilterbankforgeneralizedorthogonalfrequencydivisionmultiplexing |