Design Considerations for Murine Retinal Imaging Using Scattering Angle Resolved Optical Coherence Tomography

Optical coherence tomography (OCT), an optical imaging approach enabling cross-sectional analysis of turbid samples, is routinely used for retinal imaging in human and animal models of diseases affecting the retina. Scattering angle resolved (SAR-)OCT has previously been demonstrated as offering add...

Full description

Bibliographic Details
Main Authors: Michael R. Gardner, Nitesh Katta, Ayesha S. Rahman, Henry G. Rylander, Thomas E. Milner
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/8/11/2159
Description
Summary:Optical coherence tomography (OCT), an optical imaging approach enabling cross-sectional analysis of turbid samples, is routinely used for retinal imaging in human and animal models of diseases affecting the retina. Scattering angle resolved (SAR-)OCT has previously been demonstrated as offering additional contrast in human studies, but no SAR-OCT system has been reported in detail for imaging the retinas of mice. An optical model of a mouse eye was designed and extended for validity at wavelengths of light around 1310 nm; this model was then utilized to develop a SAR-OCT design for murine retinal imaging. A Monte Carlo technique simulates light scattering from the retina, and the simulation results are confirmed with SAR-OCT images. Various images from the SAR-OCT system are presented and utility of the system is described. SAR-OCT is demonstrated as a viable and robust imaging platform to extend utility of retinal OCT imaging by incorporating scattering data into investigative ophthalmologic analysis.
ISSN:2076-3417