Joshi’s Split Tree for Option Pricing

In a thorough study of binomial trees, Joshi introduced the split tree as a two-phase binomial tree designed to minimize oscillations, and demonstrated empirically its outstanding performance when applied to pricing American put options. Here we introduce a “flexible” version of Joshi’s tree, and de...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Guillaume Leduc, Merima Nurkanovic Hot
Ձևաչափ: Հոդված
Լեզու:English
Հրապարակվել է: MDPI AG 2020-08-01
Շարք:Risks
Խորագրեր:
Առցանց հասանելիություն:https://www.mdpi.com/2227-9091/8/3/81
_version_ 1827711880173453312
author Guillaume Leduc
Merima Nurkanovic Hot
author_facet Guillaume Leduc
Merima Nurkanovic Hot
author_sort Guillaume Leduc
collection DOAJ
description In a thorough study of binomial trees, Joshi introduced the split tree as a two-phase binomial tree designed to minimize oscillations, and demonstrated empirically its outstanding performance when applied to pricing American put options. Here we introduce a “flexible” version of Joshi’s tree, and develop the corresponding convergence theory in the European case: we find a closed form formula for the coefficients of <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><msup><mi>n</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> in the expansion of the error. Then we define several optimized versions of the tree, and find closed form formulae for the parameters of these optimal variants. In a numerical study, we found that in the American case, an optimized variant of the tree significantly improved the performance of Joshi’s original split tree.
first_indexed 2024-03-10T18:03:45Z
format Article
id doaj.art-fd0c2df4b2ce48289c925b278856ed55
institution Directory Open Access Journal
issn 2227-9091
language English
last_indexed 2024-03-10T18:03:45Z
publishDate 2020-08-01
publisher MDPI AG
record_format Article
series Risks
spelling doaj.art-fd0c2df4b2ce48289c925b278856ed552023-11-20T08:44:26ZengMDPI AGRisks2227-90912020-08-01838110.3390/risks8030081Joshi’s Split Tree for Option PricingGuillaume Leduc0Merima Nurkanovic Hot1Department of Mathematics, American University of Sharjah, P.O. Box 26666, Sharjah, UAEDepartment of Mathematics, University of Kaiserslautern, 67653 Kaiserslautern, GermanyIn a thorough study of binomial trees, Joshi introduced the split tree as a two-phase binomial tree designed to minimize oscillations, and demonstrated empirically its outstanding performance when applied to pricing American put options. Here we introduce a “flexible” version of Joshi’s tree, and develop the corresponding convergence theory in the European case: we find a closed form formula for the coefficients of <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><msup><mi>n</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> in the expansion of the error. Then we define several optimized versions of the tree, and find closed form formulae for the parameters of these optimal variants. In a numerical study, we found that in the American case, an optimized variant of the tree significantly improved the performance of Joshi’s original split tree.https://www.mdpi.com/2227-9091/8/3/81binomial option pricingerror analysis for non-self-similar binomial treesAmerican optionsBlack–Scholes
spellingShingle Guillaume Leduc
Merima Nurkanovic Hot
Joshi’s Split Tree for Option Pricing
Risks
binomial option pricing
error analysis for non-self-similar binomial trees
American options
Black–Scholes
title Joshi’s Split Tree for Option Pricing
title_full Joshi’s Split Tree for Option Pricing
title_fullStr Joshi’s Split Tree for Option Pricing
title_full_unstemmed Joshi’s Split Tree for Option Pricing
title_short Joshi’s Split Tree for Option Pricing
title_sort joshi s split tree for option pricing
topic binomial option pricing
error analysis for non-self-similar binomial trees
American options
Black–Scholes
url https://www.mdpi.com/2227-9091/8/3/81
work_keys_str_mv AT guillaumeleduc joshissplittreeforoptionpricing
AT merimanurkanovichot joshissplittreeforoptionpricing