STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS

Autorregressive integrated moving average models ARIMA, were adjusted to series of monthly sun bright for 32 meteorological stations of The National Federation of Coffee Growers of Colombia. The structure of the adjusted models was ARIMA(0; 1; 1) * (0; 1; 1)12 this is a moving average with a seasona...

Full description

Bibliographic Details
Main Author: Chaves Bernardo
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2002-05-01
Series:Revista Colombiana de Estadística
Subjects:
Online Access:http://www.revistas.unal.edu.co/index.php/estad/article/view/28548
_version_ 1828359388716335104
author Chaves Bernardo
author_facet Chaves Bernardo
author_sort Chaves Bernardo
collection DOAJ
description Autorregressive integrated moving average models ARIMA, were adjusted to series of monthly sun bright for 32 meteorological stations of The National Federation of Coffee Growers of Colombia. The structure of the adjusted models was ARIMA(0; 1; 1) * (0; 1; 1)12 this is a moving average with a seasonality component each 12 month, the estimated parameters were sufficient to describe the behavior of the series, they were statistically different from zero and non correlated. The estimated forecasts were found very approximated to observed values, they are actualized monthly, this characteristic allow to readjust the model when the pattern series change and to plan activities related with absorption of solar energy. The greatest forecast error was 23% and it is considered acceptable.<br>Se ajustaron modelos ARIMA a series mensuales de brillo solar obtenidas en 32 estaciones meteorológicas de la Federación Nacional de Cafeteros de Colombia. La estructura de los modelos ajustados fue ARIMA(0; 1; 1)*(0; 1; 1)12 de promedios móviles con componente estacional de 12 meses. Los parámetros estimados fueron suficientes para describir el comportamiento de la serie. Los pronósticos obtenidos fueron muy cercanos de los valores observados, actualizados mensualmente. Esta característica permite reajustar el modelo cuando haya cambios en el patrón de la serie y planificar actividades relacionadas con la absorción de la energía solar. El mayor error de pronóstico fue de 23 %, considerado como aceptable.
first_indexed 2024-04-14T03:41:51Z
format Article
id doaj.art-fd15a54fe3be4f58915f6d08fc51c65b
institution Directory Open Access Journal
issn 0120-1751
language English
last_indexed 2024-04-14T03:41:51Z
publishDate 2002-05-01
publisher Universidad Nacional de Colombia
record_format Article
series Revista Colombiana de Estadística
spelling doaj.art-fd15a54fe3be4f58915f6d08fc51c65b2022-12-22T02:14:30ZengUniversidad Nacional de ColombiaRevista Colombiana de Estadística0120-17512002-05-012515971STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREASChaves BernardoAutorregressive integrated moving average models ARIMA, were adjusted to series of monthly sun bright for 32 meteorological stations of The National Federation of Coffee Growers of Colombia. The structure of the adjusted models was ARIMA(0; 1; 1) * (0; 1; 1)12 this is a moving average with a seasonality component each 12 month, the estimated parameters were sufficient to describe the behavior of the series, they were statistically different from zero and non correlated. The estimated forecasts were found very approximated to observed values, they are actualized monthly, this characteristic allow to readjust the model when the pattern series change and to plan activities related with absorption of solar energy. The greatest forecast error was 23% and it is considered acceptable.<br>Se ajustaron modelos ARIMA a series mensuales de brillo solar obtenidas en 32 estaciones meteorológicas de la Federación Nacional de Cafeteros de Colombia. La estructura de los modelos ajustados fue ARIMA(0; 1; 1)*(0; 1; 1)12 de promedios móviles con componente estacional de 12 meses. Los parámetros estimados fueron suficientes para describir el comportamiento de la serie. Los pronósticos obtenidos fueron muy cercanos de los valores observados, actualizados mensualmente. Esta característica permite reajustar el modelo cuando haya cambios en el patrón de la serie y planificar actividades relacionadas con la absorción de la energía solar. El mayor error de pronóstico fue de 23 %, considerado como aceptable.http://www.revistas.unal.edu.co/index.php/estad/article/view/28548Stochastic modelARIMAtime seriessun bright
spellingShingle Chaves Bernardo
STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS
Revista Colombiana de Estadística
Stochastic model
ARIMA
time series
sun bright
title STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS
title_full STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS
title_fullStr STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS
title_full_unstemmed STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS
title_short STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS STOCHASTIC MODELLING OF MONTHLY SUN BRIGHT IN COFFEE GROWING AREAS
title_sort stochastic modelling of monthly sun bright in coffee growing areas stochastic modelling of monthly sun bright in coffee growing areas
topic Stochastic model
ARIMA
time series
sun bright
url http://www.revistas.unal.edu.co/index.php/estad/article/view/28548
work_keys_str_mv AT chavesbernardo stochasticmodellingofmonthlysunbrightincoffeegrowingareasstochasticmodellingofmonthlysunbrightincoffeegrowingareas