Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland
Crystalline bedrock has been chosen for deep geologic long-term storage of used nuclear fuel in Finland. The risks generated by the deep subsurface microbial communities in these disposal sites need to be well characterised in advance to ensure safety. Deep subsurface microbial communities in a stea...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Geosciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3263/8/11/399 |
_version_ | 1819297712771694592 |
---|---|
author | Hanna Miettinen Malin Bomberg Minna Vikman |
author_facet | Hanna Miettinen Malin Bomberg Minna Vikman |
author_sort | Hanna Miettinen |
collection | DOAJ |
description | Crystalline bedrock has been chosen for deep geologic long-term storage of used nuclear fuel in Finland. The risks generated by the deep subsurface microbial communities in these disposal sites need to be well characterised in advance to ensure safety. Deep subsurface microbial communities in a steady state are unlikely to contribute to known risk factors, such as corrosion or gas production. However, the construction of the geological final-disposal facility, bedrock disturbances, and hydraulic gradients cause changes that affect the microbial steady-state. To study the induced metabolism of deep microbial communities in changing environmental conditions, the activating effect of different electron donors and acceptors were measured with redox sensing fluorescent dyes (5-Cyano-2,3-ditolyl tetrazolium chloride, CTC and RedoxSensor™ Green, RSG). Fluids originating from two different fracture zones of the Finnish disposal site in Olkiluoto were studied. These fracture fluids were very dissimilar both chemically and in terms of bacterial and archaeal diversity. However, the microbial communities of both fracture fluids were activated, especially with acetate, which indicates the important role of acetate as a preferred electron donor for Olkiluoto deep subsurface communities. |
first_indexed | 2024-12-24T05:18:22Z |
format | Article |
id | doaj.art-fd17ce1802a84465a0af4f0b04a4b7ac |
institution | Directory Open Access Journal |
issn | 2076-3263 |
language | English |
last_indexed | 2024-12-24T05:18:22Z |
publishDate | 2018-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Geosciences |
spelling | doaj.art-fd17ce1802a84465a0af4f0b04a4b7ac2022-12-21T17:13:31ZengMDPI AGGeosciences2076-32632018-11-0181139910.3390/geosciences8110399geosciences8110399Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, FinlandHanna Miettinen0Malin Bomberg1Minna Vikman2VTT Technical Research Centre of Finland Ltd., 02044 Espoo, FinlandVTT Technical Research Centre of Finland Ltd., 02044 Espoo, FinlandVTT Technical Research Centre of Finland Ltd., 02044 Espoo, FinlandCrystalline bedrock has been chosen for deep geologic long-term storage of used nuclear fuel in Finland. The risks generated by the deep subsurface microbial communities in these disposal sites need to be well characterised in advance to ensure safety. Deep subsurface microbial communities in a steady state are unlikely to contribute to known risk factors, such as corrosion or gas production. However, the construction of the geological final-disposal facility, bedrock disturbances, and hydraulic gradients cause changes that affect the microbial steady-state. To study the induced metabolism of deep microbial communities in changing environmental conditions, the activating effect of different electron donors and acceptors were measured with redox sensing fluorescent dyes (5-Cyano-2,3-ditolyl tetrazolium chloride, CTC and RedoxSensor™ Green, RSG). Fluids originating from two different fracture zones of the Finnish disposal site in Olkiluoto were studied. These fracture fluids were very dissimilar both chemically and in terms of bacterial and archaeal diversity. However, the microbial communities of both fracture fluids were activated, especially with acetate, which indicates the important role of acetate as a preferred electron donor for Olkiluoto deep subsurface communities.https://www.mdpi.com/2076-3263/8/11/399uncultured bacteriauncultured archaeadeep biosphereelectron donorelectron acceptornitratesulphatemethane |
spellingShingle | Hanna Miettinen Malin Bomberg Minna Vikman Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland Geosciences uncultured bacteria uncultured archaea deep biosphere electron donor electron acceptor nitrate sulphate methane |
title | Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland |
title_full | Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland |
title_fullStr | Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland |
title_full_unstemmed | Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland |
title_short | Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland |
title_sort | acetate activates deep subsurface fracture fluid microbial communities in olkiluoto finland |
topic | uncultured bacteria uncultured archaea deep biosphere electron donor electron acceptor nitrate sulphate methane |
url | https://www.mdpi.com/2076-3263/8/11/399 |
work_keys_str_mv | AT hannamiettinen acetateactivatesdeepsubsurfacefracturefluidmicrobialcommunitiesinolkiluotofinland AT malinbomberg acetateactivatesdeepsubsurfacefracturefluidmicrobialcommunitiesinolkiluotofinland AT minnavikman acetateactivatesdeepsubsurfacefracturefluidmicrobialcommunitiesinolkiluotofinland |