Large D gravity and charged membrane dynamics with nonzero cosmological constant

Abstract In this paper, we have found a class of dynamical charged ‘black-hole’ solutions to Einstein-Maxwell system with a non-zero cosmological constant in a large number of spacetime dimensions. We have solved up to the first sub-leading order using large D scheme where the inverse of the number...

Full description

Bibliographic Details
Main Authors: Suman Kundu, Poulami Nandi
Format: Article
Language:English
Published: SpringerOpen 2018-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP12(2018)034
Description
Summary:Abstract In this paper, we have found a class of dynamical charged ‘black-hole’ solutions to Einstein-Maxwell system with a non-zero cosmological constant in a large number of spacetime dimensions. We have solved up to the first sub-leading order using large D scheme where the inverse of the number of dimensions serves as the perturbation parameter. The system is dual to a dynamical membrane with a charge and a velocity field, living on it. The dual membrane has to be embedded in a background geometry that itself, satisfies the pure gravity equation in presence of a cosmological constant. Pure AdS / dS are particular examples of such background. We have also obtained the membrane equations governing the dynamics of charged membrane. The consistency of our membrane equations is checked by calculating the quasi-normal modes with different Einstein-Maxwell System in AdS/dS.
ISSN:1029-8479