k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities

In this article, our main aim is to investigate the existence of radial kk-convex solutions for the following Dirichlet system with kk-Hessian operators: Sk(D2u)=λ1ν1(∣x∣)(−u)p1(−v)q1inℬ(R),Sk(D2v)=λ2ν2(∣x∣)(−u)p2(−v)q2inℬ(R),u=v=0on∂ℬ(R).\left\{\begin{array}{ll}{S}_{k}\left({D}^{2}u)={\lambda }_{1}...

Full description

Bibliographic Details
Main Authors: He Xingyue, Gao Chenghua, Wang Jingjing
Format: Article
Language:English
Published: De Gruyter 2024-03-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2023-0136
_version_ 1797258416283975680
author He Xingyue
Gao Chenghua
Wang Jingjing
author_facet He Xingyue
Gao Chenghua
Wang Jingjing
author_sort He Xingyue
collection DOAJ
description In this article, our main aim is to investigate the existence of radial kk-convex solutions for the following Dirichlet system with kk-Hessian operators: Sk(D2u)=λ1ν1(∣x∣)(−u)p1(−v)q1inℬ(R),Sk(D2v)=λ2ν2(∣x∣)(−u)p2(−v)q2inℬ(R),u=v=0on∂ℬ(R).\left\{\begin{array}{ll}{S}_{k}\left({D}^{2}u)={\lambda }_{1}{\nu }_{1}\left(| x| ){\left(-u)}^{{p}_{1}}{\left(-v)}^{{q}_{1}}& {\rm{in}}\hspace{1em}{\mathcal{ {\mathcal B} }}\left(R),\\ {S}_{k}\left({D}^{2}v)={\lambda }_{2}{\nu }_{2}\left(| x| ){\left(-u)}^{{p}_{2}}{\left(-v)}^{{q}_{2}}& {\rm{in}}\hspace{1em}{\mathcal{ {\mathcal B} }}\left(R),\\ u=v=0& {\rm{on}}\hspace{1em}\partial {\mathcal{ {\mathcal B} }}\left(R).\end{array}\right. Here, up1vq1{u}^{{p}_{1}}{v}^{{q}_{1}} is called a Lane-Emden type nonlinearity. The weight functions ν1,ν2∈C([0,R],[0,∞)){\nu }_{1},{\nu }_{2}\in C\left(\left[0,R],\left[0,\infty )) with ν1(r)>0<ν2(r){\nu }_{1}\left(r)\gt 0\lt {\nu }_{2}\left(r) for all r∈(0,R]r\in \left(0,R], p1,q2{p}_{1},{q}_{2} are nonnegative and q1,p2{q}_{1},{p}_{2} are positive exponents, ℬ(R)={x∈RN:∣x∣<R}{\mathcal{ {\mathcal B} }}\left(R)=\left\{x\in {{\mathbb{R}}}^{N}:| x| \lt R\right\}, N≥2N\ge 2 is an integer, N2≤k≤N\frac{N}{2}\le k\le N. In order to achieve our main goal, we first study the existence of radial kk-convex solutions of the above-mentioned systems with general nonlinear terms by using the upper and lower solution method and Leray-Schauder degree. Based on this, by constructing a continuous curve, which divides the first quadrant into two disjoint sets, we obtain the existence and multiplicity of radial kk-convex solutions for the system depending on the parameters λ1{\lambda }_{1}, λ2{\lambda }_{2} and the continuous curve.
first_indexed 2024-04-24T22:53:11Z
format Article
id doaj.art-fd21edd51b22465bac510336a17b2a3a
institution Directory Open Access Journal
issn 2191-950X
language English
last_indexed 2024-04-24T22:53:11Z
publishDate 2024-03-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-fd21edd51b22465bac510336a17b2a3a2024-03-18T10:27:16ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2024-03-0113136238710.1515/anona-2023-0136k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearitiesHe Xingyue0Gao Chenghua1Wang Jingjing2School of Mathematics and Statistics, Northwest Normal University, 730070, Lanzhou, P. R. ChinaSchool of Mathematics and Statistics, Lanzhou City University, 730070, Lanzhou, P. R. ChinaSchool of Information Engineering, Lanzhou City University, 730070, Lanzhou, P. R. ChinaIn this article, our main aim is to investigate the existence of radial kk-convex solutions for the following Dirichlet system with kk-Hessian operators: Sk(D2u)=λ1ν1(∣x∣)(−u)p1(−v)q1inℬ(R),Sk(D2v)=λ2ν2(∣x∣)(−u)p2(−v)q2inℬ(R),u=v=0on∂ℬ(R).\left\{\begin{array}{ll}{S}_{k}\left({D}^{2}u)={\lambda }_{1}{\nu }_{1}\left(| x| ){\left(-u)}^{{p}_{1}}{\left(-v)}^{{q}_{1}}& {\rm{in}}\hspace{1em}{\mathcal{ {\mathcal B} }}\left(R),\\ {S}_{k}\left({D}^{2}v)={\lambda }_{2}{\nu }_{2}\left(| x| ){\left(-u)}^{{p}_{2}}{\left(-v)}^{{q}_{2}}& {\rm{in}}\hspace{1em}{\mathcal{ {\mathcal B} }}\left(R),\\ u=v=0& {\rm{on}}\hspace{1em}\partial {\mathcal{ {\mathcal B} }}\left(R).\end{array}\right. Here, up1vq1{u}^{{p}_{1}}{v}^{{q}_{1}} is called a Lane-Emden type nonlinearity. The weight functions ν1,ν2∈C([0,R],[0,∞)){\nu }_{1},{\nu }_{2}\in C\left(\left[0,R],\left[0,\infty )) with ν1(r)>0<ν2(r){\nu }_{1}\left(r)\gt 0\lt {\nu }_{2}\left(r) for all r∈(0,R]r\in \left(0,R], p1,q2{p}_{1},{q}_{2} are nonnegative and q1,p2{q}_{1},{p}_{2} are positive exponents, ℬ(R)={x∈RN:∣x∣<R}{\mathcal{ {\mathcal B} }}\left(R)=\left\{x\in {{\mathbb{R}}}^{N}:| x| \lt R\right\}, N≥2N\ge 2 is an integer, N2≤k≤N\frac{N}{2}\le k\le N. In order to achieve our main goal, we first study the existence of radial kk-convex solutions of the above-mentioned systems with general nonlinear terms by using the upper and lower solution method and Leray-Schauder degree. Based on this, by constructing a continuous curve, which divides the first quadrant into two disjoint sets, we obtain the existence and multiplicity of radial kk-convex solutions for the system depending on the parameters λ1{\lambda }_{1}, λ2{\lambda }_{2} and the continuous curve.https://doi.org/10.1515/anona-2023-0136k-hessian operatorlane-emden nonlinearityk-convex solutionsexistenceleray-schauder degreelower and upper solution method34b1534b1835j4735j96
spellingShingle He Xingyue
Gao Chenghua
Wang Jingjing
k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
Advances in Nonlinear Analysis
k-hessian operator
lane-emden nonlinearity
k-convex solutions
existence
leray-schauder degree
lower and upper solution method
34b15
34b18
35j47
35j96
title k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
title_full k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
title_fullStr k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
title_full_unstemmed k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
title_short k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
title_sort k convex solutions for multiparameter dirichlet systems with k hessian operator and lane emden type nonlinearities
topic k-hessian operator
lane-emden nonlinearity
k-convex solutions
existence
leray-schauder degree
lower and upper solution method
34b15
34b18
35j47
35j96
url https://doi.org/10.1515/anona-2023-0136
work_keys_str_mv AT hexingyue kconvexsolutionsformultiparameterdirichletsystemswithkhessianoperatorandlaneemdentypenonlinearities
AT gaochenghua kconvexsolutionsformultiparameterdirichletsystemswithkhessianoperatorandlaneemdentypenonlinearities
AT wangjingjing kconvexsolutionsformultiparameterdirichletsystemswithkhessianoperatorandlaneemdentypenonlinearities