ON THE P-HARMONIC RADII OF CIRCULAR SECTORS

It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by 𝑝-harmonic one, and the fundamental solution of the Laplace 𝑝-equa...

Full description

Bibliographic Details
Main Authors: A. S. Afanaseva-Grigoreva, E. G. Prilepkina
Format: Article
Language:English
Published: Petrozavodsk State University 2021-11-01
Series:Проблемы анализа
Subjects:
Online Access:https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=10950&lang=ru
_version_ 1811335785188687872
author A. S. Afanaseva-Grigoreva
E. G. Prilepkina
author_facet A. S. Afanaseva-Grigoreva
E. G. Prilepkina
author_sort A. S. Afanaseva-Grigoreva
collection DOAJ
description It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by 𝑝-harmonic one, and the fundamental solution of the Laplace 𝑝-equation acts as logarithm. In the case of 𝑝 = 2, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.
first_indexed 2024-04-13T17:29:14Z
format Article
id doaj.art-fd2c199f278d41908eb6df2fe69f3590
institution Directory Open Access Journal
issn 2306-3424
2306-3432
language English
last_indexed 2024-04-13T17:29:14Z
publishDate 2021-11-01
publisher Petrozavodsk State University
record_format Article
series Проблемы анализа
spelling doaj.art-fd2c199f278d41908eb6df2fe69f35902022-12-22T02:37:38ZengPetrozavodsk State UniversityПроблемы анализа2306-34242306-34322021-11-0110(28)331410.15393/j3.art.2021.10950ON THE P-HARMONIC RADII OF CIRCULAR SECTORSA. S. Afanaseva-Grigoreva0E. G. Prilepkina1Far Eastern Federal University, Far Eastern Center for Research and Education in Mathematics 10 Ajax Bay, Russky Island, Vladivostok 690922, RussiaFar Eastern Federal University, Far Eastern Center for Research and Education in Mathematics 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia ; Institute of Applied Mathematics, FEBRAS 7 Radio Street, Vladivostok 690041, RussiaIt is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by 𝑝-harmonic one, and the fundamental solution of the Laplace 𝑝-equation acts as logarithm. In the case of 𝑝 = 2, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=10950&lang=rucondenser capacitiesconformal radiusfamily of curvesharmonic radius
spellingShingle A. S. Afanaseva-Grigoreva
E. G. Prilepkina
ON THE P-HARMONIC RADII OF CIRCULAR SECTORS
Проблемы анализа
condenser capacities
conformal radius
family of curves
harmonic radius
title ON THE P-HARMONIC RADII OF CIRCULAR SECTORS
title_full ON THE P-HARMONIC RADII OF CIRCULAR SECTORS
title_fullStr ON THE P-HARMONIC RADII OF CIRCULAR SECTORS
title_full_unstemmed ON THE P-HARMONIC RADII OF CIRCULAR SECTORS
title_short ON THE P-HARMONIC RADII OF CIRCULAR SECTORS
title_sort on the p harmonic radii of circular sectors
topic condenser capacities
conformal radius
family of curves
harmonic radius
url https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=10950&lang=ru
work_keys_str_mv AT asafanasevagrigoreva onthepharmonicradiiofcircularsectors
AT egprilepkina onthepharmonicradiiofcircularsectors