Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda

<p>Tropical montane forests store high amounts of soil organic carbon (SOC). However, global warming may affect these stocks via enhanced soil respiration. Improved insight into the temperature response of SOC respiration can be obtained from in and ex situ warming studies. In situ warming via...

Full description

Bibliographic Details
Main Authors: J. Okello, M. Bauters, H. Verbeeck, S. Bodé, J. Kasenene, A. Françoys, T. Engelhardt, K. Butterbach-Bahl, R. Kiese, P. Boeckx
Format: Article
Language:English
Published: Copernicus Publications 2023-02-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/20/719/2023/bg-20-719-2023.pdf
_version_ 1797924544567050240
author J. Okello
J. Okello
J. Okello
J. Okello
M. Bauters
M. Bauters
H. Verbeeck
S. Bodé
J. Kasenene
A. Françoys
A. Françoys
A. Françoys
T. Engelhardt
K. Butterbach-Bahl
R. Kiese
P. Boeckx
author_facet J. Okello
J. Okello
J. Okello
J. Okello
M. Bauters
M. Bauters
H. Verbeeck
S. Bodé
J. Kasenene
A. Françoys
A. Françoys
A. Françoys
T. Engelhardt
K. Butterbach-Bahl
R. Kiese
P. Boeckx
author_sort J. Okello
collection DOAJ
description <p>Tropical montane forests store high amounts of soil organic carbon (SOC). However, global warming may affect these stocks via enhanced soil respiration. Improved insight into the temperature response of SOC respiration can be obtained from in and ex situ warming studies. In situ warming via the translocation of intact soil mesocosms was carried out along an elevation gradient ranging between ca. 1250 m in the Kibale Forest to ca. 3000 m in the Rwenzori Mountains in Uganda. Samples from the same transect were also warmed ex situ. Ex situ results revealed that, following the elevation gradient, which represents a natural climate gradient, specific heterotrophic <span class="inline-formula">CO<sub>2</sub></span> respiration decreased linearly by 1.01 <span class="inline-formula">±</span> 0.12 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">g</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="59pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="26b723d455dc08481db68dbfe9475668"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-20-719-2023-ie00001.svg" width="59pt" height="15pt" src="bg-20-719-2023-ie00001.png"/></svg:svg></span></span> of SOC per 100 m of elevation increase. The coefficient of temperature sensitivity increased from 1.50 <span class="inline-formula">±</span> 0.13 in the lowest- to 2.68 <span class="inline-formula">±</span> 0.25 in the highest-elevation cluster, showing a linear increase of 0.09 <span class="inline-formula">±</span> 0.03 per 100 m of elevation increase. Additionally, respired <span class="inline-formula">CO<sub>2</sub></span> was more depleted in <span class="inline-formula"><sup>13</sup>C</span> in the warmer lower elevations as compared to colder higher elevations, with a linear decrease of 0.23 ‰ <span class="inline-formula">±</span> 0.04 ‰ per 100 m of elevation increase. Furthermore, the microbial community structure indicated a weak trend along the elevation gradient, with higher elevations more dominated by fungi relative to bacteria. The results indicate an increased recalcitrance and decreased mineralisation of SOC, with elevation likely driven by decreasing soil temperature and pH. Subsequently, after 2 years of in situ warming (0.9 to 2.8 <span class="inline-formula"><sup>∘</sup>C</span>), specific heterotrophic SOC respiration tended to be lower for warmed soil compared to control soil. Furthermore, in warmed soils, <span class="inline-formula"><i>δ</i><sup>13</sup></span>C values and SOC content tended to increase and decrease, respectively. Collectively, this points towards the increased mineralisation and depletion of readily available C during 2 years of warming. In conclusion, our results suggest that climate warming may trigger enhanced losses of SOC from tropical montane forests due to a combination of a higher temperature sensitivity of mineralisation and higher SOC content at higher elevations.</p>
first_indexed 2024-04-10T15:02:38Z
format Article
id doaj.art-fd2df80205a84c06b52f61d7727cf03a
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-04-10T15:02:38Z
publishDate 2023-02-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-fd2df80205a84c06b52f61d7727cf03a2023-02-15T10:34:08ZengCopernicus PublicationsBiogeosciences1726-41701726-41892023-02-012071973510.5194/bg-20-719-2023Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, UgandaJ. Okello0J. Okello1J. Okello2J. Okello3M. Bauters4M. Bauters5H. Verbeeck6S. Bodé7J. Kasenene8A. Françoys9A. Françoys10A. Françoys11T. Engelhardt12K. Butterbach-Bahl13R. Kiese14P. Boeckx15Isotope Bioscience Laboratory – ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumCAVElab – Computational and Applied Vegetation Ecology, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumFaculty of Agriculture and Environmental Sciences, Mountains of the Moon University, P.O. Box 837, Fort Portal, UgandaNational Agricultural Research Organisation, Mbarara Zonal Agricultural Research and Development Institute, P.O. Box 389, Mbarara, UgandaIsotope Bioscience Laboratory – ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumCAVElab – Computational and Applied Vegetation Ecology, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumCAVElab – Computational and Applied Vegetation Ecology, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumIsotope Bioscience Laboratory – ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumFaculty of Agriculture and Environmental Sciences, Mountains of the Moon University, P.O. Box 837, Fort Portal, UgandaIsotope Bioscience Laboratory – ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, BelgiumSoil Fertility and Nutrient Management (SoFer), Ghent University, Coupure Links 653, 9000 Ghent, BelgiumSoil Physics (SoPHy), Ghent University, Coupure Links 653, 9000 Ghent, BelgiumDepartment of Household Waste Water Treatment, Sweco, Arenbergstraat 13, 1000 Brussels, BelgiumInstitute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, Garmisch-Partenkirchen 82467, GermanyInstitute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, Garmisch-Partenkirchen 82467, GermanyIsotope Bioscience Laboratory – ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, Belgium<p>Tropical montane forests store high amounts of soil organic carbon (SOC). However, global warming may affect these stocks via enhanced soil respiration. Improved insight into the temperature response of SOC respiration can be obtained from in and ex situ warming studies. In situ warming via the translocation of intact soil mesocosms was carried out along an elevation gradient ranging between ca. 1250 m in the Kibale Forest to ca. 3000 m in the Rwenzori Mountains in Uganda. Samples from the same transect were also warmed ex situ. Ex situ results revealed that, following the elevation gradient, which represents a natural climate gradient, specific heterotrophic <span class="inline-formula">CO<sub>2</sub></span> respiration decreased linearly by 1.01 <span class="inline-formula">±</span> 0.12 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">g</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="59pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="26b723d455dc08481db68dbfe9475668"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-20-719-2023-ie00001.svg" width="59pt" height="15pt" src="bg-20-719-2023-ie00001.png"/></svg:svg></span></span> of SOC per 100 m of elevation increase. The coefficient of temperature sensitivity increased from 1.50 <span class="inline-formula">±</span> 0.13 in the lowest- to 2.68 <span class="inline-formula">±</span> 0.25 in the highest-elevation cluster, showing a linear increase of 0.09 <span class="inline-formula">±</span> 0.03 per 100 m of elevation increase. Additionally, respired <span class="inline-formula">CO<sub>2</sub></span> was more depleted in <span class="inline-formula"><sup>13</sup>C</span> in the warmer lower elevations as compared to colder higher elevations, with a linear decrease of 0.23 ‰ <span class="inline-formula">±</span> 0.04 ‰ per 100 m of elevation increase. Furthermore, the microbial community structure indicated a weak trend along the elevation gradient, with higher elevations more dominated by fungi relative to bacteria. The results indicate an increased recalcitrance and decreased mineralisation of SOC, with elevation likely driven by decreasing soil temperature and pH. Subsequently, after 2 years of in situ warming (0.9 to 2.8 <span class="inline-formula"><sup>∘</sup>C</span>), specific heterotrophic SOC respiration tended to be lower for warmed soil compared to control soil. Furthermore, in warmed soils, <span class="inline-formula"><i>δ</i><sup>13</sup></span>C values and SOC content tended to increase and decrease, respectively. Collectively, this points towards the increased mineralisation and depletion of readily available C during 2 years of warming. In conclusion, our results suggest that climate warming may trigger enhanced losses of SOC from tropical montane forests due to a combination of a higher temperature sensitivity of mineralisation and higher SOC content at higher elevations.</p>https://bg.copernicus.org/articles/20/719/2023/bg-20-719-2023.pdf
spellingShingle J. Okello
J. Okello
J. Okello
J. Okello
M. Bauters
M. Bauters
H. Verbeeck
S. Bodé
J. Kasenene
A. Françoys
A. Françoys
A. Françoys
T. Engelhardt
K. Butterbach-Bahl
R. Kiese
P. Boeckx
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
Biogeosciences
title Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
title_full Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
title_fullStr Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
title_full_unstemmed Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
title_short Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
title_sort temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the rwenzori mountains uganda
url https://bg.copernicus.org/articles/20/719/2023/bg-20-719-2023.pdf
work_keys_str_mv AT jokello temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT jokello temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT jokello temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT jokello temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT mbauters temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT mbauters temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT hverbeeck temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT sbode temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT jkasenene temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT afrancoys temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT afrancoys temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT afrancoys temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT tengelhardt temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT kbutterbachbahl temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT rkiese temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda
AT pboeckx temperaturesensitivityofsoilorganiccarbonrespirationalongaforestedelevationgradientintherwenzorimountainsuganda