Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens

Aloe vera, nettle and dill are herbs that have been used in the poultry diet as feed additives to utilise their benefits in improving performance, immune response and health of broiler chickens. However, reactive and volatile properties of bioactive compounds in herbal extracts cause limitations on...

Full description

Bibliographic Details
Main Authors: A. Meimandipour, A. Nouri Emamzadeh, A. Soleimani
Format: Article
Language:English
Published: Copernicus Publications 2017-01-01
Series:Archives Animal Breeding
Online Access:http://www.arch-anim-breed.net/60/1/2017/aab-60-1-2017.pdf
_version_ 1818272304989208576
author A. Meimandipour
A. Nouri Emamzadeh
A. Soleimani
author_facet A. Meimandipour
A. Nouri Emamzadeh
A. Soleimani
author_sort A. Meimandipour
collection DOAJ
description Aloe vera, nettle and dill are herbs that have been used in the poultry diet as feed additives to utilise their benefits in improving performance, immune response and health of broiler chickens. However, reactive and volatile properties of bioactive compounds in herbal extracts cause limitations on direct usage of them in the diet. The use of chitosan (CS) nanoparticles for the entrapment of active components has gained interest in the last few years due to its mucous adhesiveness, non-toxicity, biocompatibility and biodegradability. This study was an effort to evaluate effects of nanoencapsulated extracts of aloe vera, dill and nettle root used in diet on performance, carcass traits and serum immunoglobulin (IgM and IgY) concentrations in broiler chickens. Chitosan nanoparticles were prepared by using ionotropic gelation principle. After nanogel preparation of herbal extracts, a total of 240 Ross (308) broiler chicks were divided into eight treatments, with three replicates of 10 birds. The eight dietary treatments consisted of control (no additives), antibiotic (bacitracin 500 g t<sup>−1</sup>), non-encapsulated and nanoencapsulated extracts of aloe vera, dill and nettle root. In each experimental period, non-encapsulated (free extracts) and nanoencapsulated extracts of aloe vera, dill and nettle roots were added in amounts of 0.02, 0.025 and 0.05 % to starter, grower and finisher diets, respectively. Birds in different treatments received the same diets during the experimental periods. Results revealed that increasing both non-encapsulated and nanoencapsulated herbal extracts to 0.05 % in finisher diets improved body weight gain in the time period of 28–42 days and consequently the whole time from 1 to 42 days. However, in these periods, birds fed a diet containing nanoencapsulated dill extract had a significantly (<i>P</i>  &lt;  0.05) higher body weight gain compared with the antibiotic group, while non-encapsulated dill extract treatment was intermediate. The addition of nanoencapsulated nettle extract in diet significantly (<i>P</i>  &lt;  0.05) improved feed conversion efficiency in the 28–42-day period compared with the antibiotic group. In comparison with the antibiotic group, nanoencapsulation of dill extract could profoundly improve growth performance and can therefore be used as a substitute for antibiotics in the diet of broiler chickens.
first_indexed 2024-12-12T21:39:57Z
format Article
id doaj.art-fd34470d46af42da98a5985d4322bb04
institution Directory Open Access Journal
issn 0003-9438
2363-9822
language English
last_indexed 2024-12-12T21:39:57Z
publishDate 2017-01-01
publisher Copernicus Publications
record_format Article
series Archives Animal Breeding
spelling doaj.art-fd34470d46af42da98a5985d4322bb042022-12-22T00:11:06ZengCopernicus PublicationsArchives Animal Breeding0003-94382363-98222017-01-016011710.5194/aab-60-1-2017Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickensA. Meimandipour0A. Nouri Emamzadeh1A. Soleimani2Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, IranDepartment of Animal Science, Garmsar Branch, Islamic Azad University, Garmsar, IranDepartment of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, IranAloe vera, nettle and dill are herbs that have been used in the poultry diet as feed additives to utilise their benefits in improving performance, immune response and health of broiler chickens. However, reactive and volatile properties of bioactive compounds in herbal extracts cause limitations on direct usage of them in the diet. The use of chitosan (CS) nanoparticles for the entrapment of active components has gained interest in the last few years due to its mucous adhesiveness, non-toxicity, biocompatibility and biodegradability. This study was an effort to evaluate effects of nanoencapsulated extracts of aloe vera, dill and nettle root used in diet on performance, carcass traits and serum immunoglobulin (IgM and IgY) concentrations in broiler chickens. Chitosan nanoparticles were prepared by using ionotropic gelation principle. After nanogel preparation of herbal extracts, a total of 240 Ross (308) broiler chicks were divided into eight treatments, with three replicates of 10 birds. The eight dietary treatments consisted of control (no additives), antibiotic (bacitracin 500 g t<sup>−1</sup>), non-encapsulated and nanoencapsulated extracts of aloe vera, dill and nettle root. In each experimental period, non-encapsulated (free extracts) and nanoencapsulated extracts of aloe vera, dill and nettle roots were added in amounts of 0.02, 0.025 and 0.05 % to starter, grower and finisher diets, respectively. Birds in different treatments received the same diets during the experimental periods. Results revealed that increasing both non-encapsulated and nanoencapsulated herbal extracts to 0.05 % in finisher diets improved body weight gain in the time period of 28–42 days and consequently the whole time from 1 to 42 days. However, in these periods, birds fed a diet containing nanoencapsulated dill extract had a significantly (<i>P</i>  &lt;  0.05) higher body weight gain compared with the antibiotic group, while non-encapsulated dill extract treatment was intermediate. The addition of nanoencapsulated nettle extract in diet significantly (<i>P</i>  &lt;  0.05) improved feed conversion efficiency in the 28–42-day period compared with the antibiotic group. In comparison with the antibiotic group, nanoencapsulation of dill extract could profoundly improve growth performance and can therefore be used as a substitute for antibiotics in the diet of broiler chickens.http://www.arch-anim-breed.net/60/1/2017/aab-60-1-2017.pdf
spellingShingle A. Meimandipour
A. Nouri Emamzadeh
A. Soleimani
Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens
Archives Animal Breeding
title Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens
title_full Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens
title_fullStr Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens
title_full_unstemmed Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens
title_short Effects of nanoencapsulated aloe vera, dill and nettle root extract as feed antibiotic substitutes in broiler chickens
title_sort effects of nanoencapsulated aloe vera dill and nettle root extract as feed antibiotic substitutes in broiler chickens
url http://www.arch-anim-breed.net/60/1/2017/aab-60-1-2017.pdf
work_keys_str_mv AT ameimandipour effectsofnanoencapsulatedaloeveradillandnettlerootextractasfeedantibioticsubstitutesinbroilerchickens
AT anouriemamzadeh effectsofnanoencapsulatedaloeveradillandnettlerootextractasfeedantibioticsubstitutesinbroilerchickens
AT asoleimani effectsofnanoencapsulatedaloeveradillandnettlerootextractasfeedantibioticsubstitutesinbroilerchickens