CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow para...

Full description

Bibliographic Details
Main Authors: A. Mugnai, E. A. Smith, G. J. Tripoli, B. Bizzarri, D. Casella, S. Dietrich, F. Di Paola, G. Panegrossi, P. Sanò
Format: Article
Language:English
Published: Copernicus Publications 2013-04-01
Series:Natural Hazards and Earth System Sciences
Online Access:http://www.nat-hazards-earth-syst-sci.net/13/887/2013/nhess-13-887-2013.pdf
_version_ 1811270465730117632
author A. Mugnai
E. A. Smith
G. J. Tripoli
B. Bizzarri
D. Casella
S. Dietrich
F. Di Paola
G. Panegrossi
P. Sanò
author_facet A. Mugnai
E. A. Smith
G. J. Tripoli
B. Bizzarri
D. Casella
S. Dietrich
F. Di Paola
G. Panegrossi
P. Sanò
author_sort A. Mugnai
collection DOAJ
description Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided including a few examples of their performance. This aspect of the development of the two algorithms is placed in the context of what we refer to as the TRMM era, which is the era denoting the active and ongoing period of the Tropical Rainfall Measuring Mission (TRMM) that helped inspire their original development. In 2015, the ISAC-Rome precipitation algorithms will undergo a transformation beginning with the upcoming Global Precipitation Measurement (GPM) mission, particularly the GPM Core Satellite technologies. A few years afterward, the first pair of imaging and sounding Meteosat Third Generation (MTG) satellites will be launched, providing additional technological advances. Various of the opportunities presented by the GPM Core and MTG satellites for improving the current CDRD and PNPR precipitation retrieval algorithms, as well as extending their product capability, are discussed.
first_indexed 2024-04-12T22:02:24Z
format Article
id doaj.art-fd36a22fb5244c80bb9dc6c902ccc728
institution Directory Open Access Journal
issn 1561-8633
1684-9981
language English
last_indexed 2024-04-12T22:02:24Z
publishDate 2013-04-01
publisher Copernicus Publications
record_format Article
series Natural Hazards and Earth System Sciences
spelling doaj.art-fd36a22fb5244c80bb9dc6c902ccc7282022-12-22T03:15:06ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812013-04-0113488791210.5194/nhess-13-887-2013CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operationsA. MugnaiE. A. SmithG. J. TripoliB. BizzarriD. CasellaS. DietrichF. Di PaolaG. PanegrossiP. SanòSatellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided including a few examples of their performance. This aspect of the development of the two algorithms is placed in the context of what we refer to as the TRMM era, which is the era denoting the active and ongoing period of the Tropical Rainfall Measuring Mission (TRMM) that helped inspire their original development. In 2015, the ISAC-Rome precipitation algorithms will undergo a transformation beginning with the upcoming Global Precipitation Measurement (GPM) mission, particularly the GPM Core Satellite technologies. A few years afterward, the first pair of imaging and sounding Meteosat Third Generation (MTG) satellites will be launched, providing additional technological advances. Various of the opportunities presented by the GPM Core and MTG satellites for improving the current CDRD and PNPR precipitation retrieval algorithms, as well as extending their product capability, are discussed.http://www.nat-hazards-earth-syst-sci.net/13/887/2013/nhess-13-887-2013.pdf
spellingShingle A. Mugnai
E. A. Smith
G. J. Tripoli
B. Bizzarri
D. Casella
S. Dietrich
F. Di Paola
G. Panegrossi
P. Sanò
CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations
Natural Hazards and Earth System Sciences
title CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations
title_full CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations
title_fullStr CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations
title_full_unstemmed CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations
title_short CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations
title_sort cdrd and pnpr satellite passive microwave precipitation retrieval algorithms eurotrmm eurainsat origins and h saf operations
url http://www.nat-hazards-earth-syst-sci.net/13/887/2013/nhess-13-887-2013.pdf
work_keys_str_mv AT amugnai cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT easmith cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT gjtripoli cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT bbizzarri cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT dcasella cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT sdietrich cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT fdipaola cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT gpanegrossi cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations
AT psano cdrdandpnprsatellitepassivemicrowaveprecipitationretrievalalgorithmseurotrmmeurainsatoriginsandhsafoperations