Development of a prototype superconducting radio-frequency cavity for conduction-cooled accelerators

The higher efficiency of superconducting radio-frequency (SRF) cavities compared to normal-conducting ones enables the development of high-energy continuous-wave linear accelerators (linacs). Recent progress in the development of high-quality Nb_{3}Sn film coatings along with the availability of cry...

Full description

Bibliographic Details
Main Authors: G. Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coriton, E. Daly, P. Dhakal, A. Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. McLaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer
Format: Article
Language:English
Published: American Physical Society 2023-04-01
Series:Physical Review Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevAccelBeams.26.044701
Description
Summary:The higher efficiency of superconducting radio-frequency (SRF) cavities compared to normal-conducting ones enables the development of high-energy continuous-wave linear accelerators (linacs). Recent progress in the development of high-quality Nb_{3}Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. A possible use of conduction-cooled SRF linacs is for environmental applications, requiring electron beams with energy of 1–10 MeV and 1 MW of power. We have designed a 915 MHz SRF linac for such an application and developed a prototype single-cell cavity to prove the proposed design by operating it with cryocoolers at the accelerating gradient required for 1 MeV energy gain. The cavity has a ∼3  μm thick Nb_{3}Sn film on the inner surface, deposited on a ∼4  mm thick bulk Nb substrate and a bulk ∼7  mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three Gifford-McMahon cryocoolers. The rf tests of the conduction-cooled cavity, performed at General Atomics, achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date and meet the requirements for a 1 MeV energy gain.
ISSN:2469-9888