A New Representation of the Generalized Krätzel Function
The confluence of distributions (generalized functions) with integral transforms has become a remarkably powerful tool to address important unsolved problems. The purpose of the present study is to investigate a distributional representation of the generalized Krätzel function. Hence, a new definiti...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/11/2009 |
Summary: | The confluence of distributions (generalized functions) with integral transforms has become a remarkably powerful tool to address important unsolved problems. The purpose of the present study is to investigate a distributional representation of the generalized Krätzel function. Hence, a new definition of these functions is formulated over a particular set of test functions. This is validated using the classical Fourier transform. The results lead to a novel extension of Krätzel functions by introducing distributions in terms of the delta function. A new version of the generalized Krätzel integral transform emerges as a natural consequence of this research. The relationship between the Krätzel function and the <inline-formula><math display="inline"><semantics><mi>H</mi></semantics></math></inline-formula>-function is also explored to study new identities. |
---|---|
ISSN: | 2227-7390 |