Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights

Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate...

Full description

Bibliographic Details
Main Authors: Qiang Gao, Hemanth Somarajan Pillai, Yang Huang, Shikai Liu, Qingmin Mu, Xue Han, Zihao Yan, Hua Zhou, Qian He, Hongliang Xin, Huiyuan Zhu
Format: Article
Language:English
Published: Nature Portfolio 2022-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-29926-w
_version_ 1817982310000099328
author Qiang Gao
Hemanth Somarajan Pillai
Yang Huang
Shikai Liu
Qingmin Mu
Xue Han
Zihao Yan
Hua Zhou
Qian He
Hongliang Xin
Huiyuan Zhu
author_facet Qiang Gao
Hemanth Somarajan Pillai
Yang Huang
Shikai Liu
Qingmin Mu
Xue Han
Zihao Yan
Hua Zhou
Qian He
Hongliang Xin
Huiyuan Zhu
author_sort Qiang Gao
collection DOAJ
description Machine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia.
first_indexed 2024-04-13T23:19:09Z
format Article
id doaj.art-fd6108570708433b95b0ae4d059aedce
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-04-13T23:19:09Z
publishDate 2022-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-fd6108570708433b95b0ae4d059aedce2022-12-22T02:25:18ZengNature PortfolioNature Communications2041-17232022-04-0113111210.1038/s41467-022-29926-wBreaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insightsQiang Gao0Hemanth Somarajan Pillai1Yang Huang2Shikai Liu3Qingmin Mu4Xue Han5Zihao Yan6Hua Zhou7Qian He8Hongliang Xin9Huiyuan Zhu10Department of Chemical Engineering, Virginia Polytechnic Institute and State UniversityDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityDepartment of Materials Science and Engineering, National University of SingaporeDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityX-ray Science Division, Advanced Photon Source, Argonne National LaboratoryDepartment of Materials Science and Engineering, National University of SingaporeDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityDepartment of Chemical Engineering, Virginia Polytechnic Institute and State UniversityMachine learning is a powerful tool for screening electrocatalytic materials. Here, the authors reported a seamless integration of machine-learned physical insights with the controlled synthesis of structurally ordered intermetallic nanocrystals and well-defined catalytic sites for efficient nitrate reduction to ammonia.https://doi.org/10.1038/s41467-022-29926-w
spellingShingle Qiang Gao
Hemanth Somarajan Pillai
Yang Huang
Shikai Liu
Qingmin Mu
Xue Han
Zihao Yan
Hua Zhou
Qian He
Hongliang Xin
Huiyuan Zhu
Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
Nature Communications
title Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
title_full Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
title_fullStr Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
title_full_unstemmed Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
title_short Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
title_sort breaking adsorption energy scaling limitations of electrocatalytic nitrate reduction on intermetallic cupd nanocubes by machine learned insights
url https://doi.org/10.1038/s41467-022-29926-w
work_keys_str_mv AT qianggao breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT hemanthsomarajanpillai breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT yanghuang breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT shikailiu breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT qingminmu breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT xuehan breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT zihaoyan breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT huazhou breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT qianhe breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT hongliangxin breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights
AT huiyuanzhu breakingadsorptionenergyscalinglimitationsofelectrocatalyticnitratereductiononintermetalliccupdnanocubesbymachinelearnedinsights